What is the dimensional formula for magnetic flux densities?
Answer
Verified
115.8k+ views
Hint: The above problem can be resolved by using the concepts and applications of the dimensional formulas. The dimensional formula for the magnetic flux density can be obtained by the mathematical relation for the magnetic flux density. The magnetic flux density is determined by taking the ratio of the magnetic flux and the region's volume taken into consideration. Then the corresponding values are substituted, and the final result is obtained.
Complete Step by Step Solution:
A dimensional formula represents an equation, which gives the relation between fundamental units and derived units in terms of dimensions.
The length, mass and time are taken as three base dimensions and are represented by letters L, M, T respectively.
Magnetic flux is a measure of the quantity of magnetism, being the total number of magnetic lines of force passing through a specified area in a magnetic field. Magnetic flux through a plane of area $A$ placed in a uniform magnetic field $B$ can be written as ${\varphi _B} = B \cdot A = BA\cos \theta $.
The dimensional formula of area is $A = \left[ {{M^0}{L^2}{T^0}} \right]$ and
The dimensional formula of magnetic field is $B = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$ since, $B = \dfrac{{{\text{Force}}}}{{{\text{Charge} \times \text{Velocity}}}} = \dfrac{{\left[ {{M^1}{L^1}{T^{ - 2}}} \right]}}{{\left[ {{M^0}{L^0}{T^0}{I^1}} \right]\left[ {{L^1}{T^{ - 1}}} \right]}} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Since $\cos \theta $ is a number, it has no dimensions.
Thus, the dimensional formula of magnetic flux is ${\varphi _B} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]\left[ {{L^2}} \right] = \left[ {{M^1}{L^2}{T^{ - 2}}{I^{ - 1}}} \right]$
Magnetic Flux Density is the amount of magnetic flux through unit area taken perpendicular to direction of magnetic flux. Mathematically, $b = \dfrac{{{\varphi _B}}}{A}$.
Thus, the dimensional formula of magnetic flux density is $b = \dfrac{{{\varphi _B}}}{A} = \dfrac{{\left[ {{M^1}{L^2}{T^{ - 2}}{I^{ - 1}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Note: Flux Density ($b$) is related to Magnetic Field ($B$) by $b = \mu B$ where $\mu $ is the permeability of the medium (material) where we are measuring the fields.
The permeability of the medium is a constant and has no dimensions.
Thus the dimensional formula of magnetic flux density is the same as that of the magnetic field $B$, which is given by, $B = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Complete Step by Step Solution:
A dimensional formula represents an equation, which gives the relation between fundamental units and derived units in terms of dimensions.
The length, mass and time are taken as three base dimensions and are represented by letters L, M, T respectively.
Magnetic flux is a measure of the quantity of magnetism, being the total number of magnetic lines of force passing through a specified area in a magnetic field. Magnetic flux through a plane of area $A$ placed in a uniform magnetic field $B$ can be written as ${\varphi _B} = B \cdot A = BA\cos \theta $.
The dimensional formula of area is $A = \left[ {{M^0}{L^2}{T^0}} \right]$ and
The dimensional formula of magnetic field is $B = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$ since, $B = \dfrac{{{\text{Force}}}}{{{\text{Charge} \times \text{Velocity}}}} = \dfrac{{\left[ {{M^1}{L^1}{T^{ - 2}}} \right]}}{{\left[ {{M^0}{L^0}{T^0}{I^1}} \right]\left[ {{L^1}{T^{ - 1}}} \right]}} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Since $\cos \theta $ is a number, it has no dimensions.
Thus, the dimensional formula of magnetic flux is ${\varphi _B} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]\left[ {{L^2}} \right] = \left[ {{M^1}{L^2}{T^{ - 2}}{I^{ - 1}}} \right]$
Magnetic Flux Density is the amount of magnetic flux through unit area taken perpendicular to direction of magnetic flux. Mathematically, $b = \dfrac{{{\varphi _B}}}{A}$.
Thus, the dimensional formula of magnetic flux density is $b = \dfrac{{{\varphi _B}}}{A} = \dfrac{{\left[ {{M^1}{L^2}{T^{ - 2}}{I^{ - 1}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Note: Flux Density ($b$) is related to Magnetic Field ($B$) by $b = \mu B$ where $\mu $ is the permeability of the medium (material) where we are measuring the fields.
The permeability of the medium is a constant and has no dimensions.
Thus the dimensional formula of magnetic flux density is the same as that of the magnetic field $B$, which is given by, $B = \left[ {{M^1}{T^{ - 2}}{I^{ - 1}}} \right]$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids