
Differentiate the value \[{{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\] with respect to \[{{\cos }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] when $x\ne 0$
Answer
232.8k+ views
Hint: To solve this question, first of all assume variable for given inverse trigonometric function then use the fact that the derivative of p with respect to q, where, p and q are both function of t is given by $\dfrac{dp}{dq}=\dfrac{\dfrac{dp}{dt}}{\dfrac{dq}{dt}}$ Also, we will use the several trigonometric formulas and chain rule of differentiation given as below:
\[\begin{align}
& \Rightarrow \text{si}{{\text{n}}^{2}}\theta =1-\text{co}{{\text{s}}^{2}}\theta \\
& \Rightarrow \dfrac{\text{sin}\theta }{\text{cos}\theta }=\text{tan}\theta \\
& \Rightarrow 2\text{sin}\theta \text{cos}\theta \text{=sin2}\theta \\
& \Rightarrow \text{sin}\theta =\text{cos}\left( \dfrac{\pi }{2}-\theta \right) \\
\end{align}\]
Chain rule of differentiation when f(x) and g(x) are function of x \[\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right)\]
Complete step-by-step solution:
Let us assume some variables for the given terms.
Let \[u={{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\text{ and v=}{{\cos }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]
We have to differentiate u with respect to v. Then, we will apply basic differentiation rule of du and dv which is given as
\[\dfrac{du}{dv}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
So, firstly to calculate $\dfrac{du}{dv}$ we will separately calculate $\dfrac{du}{dx}\text{ and }\dfrac{dv}{dx}$
That is we will differentiate u with respect to x and v with respect to x.
We have \[u={{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\]
Differentiating both sides with respect to x we get:
\[\dfrac{du}{dx}=\dfrac{d}{dx}={{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\]
To do so, let us assume x = cost in above
\[\dfrac{du}{dx}=\dfrac{d}{dx}\left( \text{ta}{{\text{n}}^{-1}}\left( \dfrac{\sqrt{1-{{\cos }^{2}}t}}{\text{cos t}} \right) \right)\]
We know a trigonometric identity as \[\begin{align}
& \text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta =1 \\
& \Rightarrow \text{si}{{\text{n}}^{2}}\theta =1-\text{co}{{\text{s}}^{2}}\theta \\
\end{align}\]
Taking square root both sides \[\text{sin}\theta \text{=}\sqrt{1-\text{co}{{\text{s}}^{2}}\theta }\]
Using this above by taking $\theta =t$ we get
\[\dfrac{du}{dx}=\dfrac{d}{dx}\left( \text{ta}{{\text{n}}^{-1}}\left( \dfrac{\text{sin t}}{\text{cos t}} \right) \right)\]
Now, we know that \[\dfrac{\text{sin}\theta }{\text{cos}\theta }=\text{tan}\theta \]
Using this in above by taking $\theta =t$ we get
\[\begin{align}
& \dfrac{du}{dx}=\dfrac{d}{dx}\left( \text{ta}{{\text{n}}^{-1}}\left( \text{tan t} \right) \right) \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( \text{t} \right)\text{ as }\left( \text{ta}{{\text{n}}^{-1}}\left( \text{tan }\theta \right) \right)=\theta \\
\end{align}\]
So, finally we have u as a function of t. Then, applying chain rule of differentiation which states that, chain rule of differentiation where f(x) and g(x) are function of x.
\[\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right)\]
In above we get
\[\Rightarrow \dfrac{du}{dx}=\dfrac{du}{dt}\times \dfrac{dt}{dx}\]
We have x = cos t
Differentiate both side with respect to t and using $\dfrac{d}{d\theta }\text{cos}\theta =-\text{sin}\theta $ in above we get:
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( \text{cos t} \right)=-\text{sin t} \\
& \Rightarrow \dfrac{dx}{dt}=-\text{sin t} \\
\end{align}\]
Reversing the above
\[\Rightarrow \dfrac{dt}{dx}=\dfrac{-1}{\text{sin t}}\]
Then, finally we have \[\Rightarrow \dfrac{du}{dx}=\dfrac{du}{dt}\times \dfrac{dt}{dx}\]
Substituting all values obtained above
\[\begin{align}
& \Rightarrow \dfrac{du}{dx}=1\left( \dfrac{-1}{\text{sin t}} \right) \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{-1}{\text{sin t}} \\
\end{align}\]
Using relation stated before that \[\text{sin t} \text{=}\sqrt{1-\text{co}{{\text{s}}^{2}}t}\] in above
\[\begin{align}
& \Rightarrow \dfrac{du}{dx}=\dfrac{-1}{\sqrt{1-\text{co}{{\text{s}}^{2}}t }} \\
& \text{as x=cos t} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
So, we have obtained $\dfrac{du}{dx}$
Similarly we will obtain $\dfrac{dv}{dx}$
\[v=\text{co}{{\text{s}}^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]
Let x = cos t
Then, substituting this value of x in v we get:
\[\Rightarrow v=\text{co}{{\text{s}}^{-1}}\left( 2\text{cos t}\sqrt{1-\text{co}{{\text{s}}^{2}}t} \right)\]
Using identity stated above as \[\text{sin}\theta \text{=}\sqrt{1-\text{co}{{\text{s}}^{2}}\theta }\] we get
\[\Rightarrow v=\text{co}{{\text{s}}^{-1}}\left( 2\text{cos t sin t} \right)\]
Now, we have a trigonometric identity given as
\[\Rightarrow \text{2sin}\theta \text{cos}\theta =\text{sin}2\theta \]
Using this above $\theta =t$ we get
\[\Rightarrow v=\text{co}{{\text{s}}^{-1}}\left( \text{sin2t} \right)\]
We have a relation between $\sin \theta \text{ and cos}\theta $ as
\[\Rightarrow \text{sin}\theta =\text{cos}\left( \dfrac{\pi }{2}-\theta \right)\]
Using this above and $\theta =2t$ we get
\[\begin{align}
& \Rightarrow v={{\cos }^{-1}}\left( \text{cos}\left( \dfrac{\pi }{2}-2t \right) \right) \\
& \Rightarrow v=\dfrac{\pi }{2}-2t \\
\end{align}\]
So, we have obtained v as a function of t, then, $\dfrac{dv}{dx}$ can be obtained by applying chain rule of differentiating stated above
\[\Rightarrow \dfrac{dv}{dx}=\dfrac{dv}{dt}\times \dfrac{dt}{dx}\]
We have \[\Rightarrow v=\dfrac{\pi }{2}-2t\]
Differentiating above with respect to we get:
\[\dfrac{dv}{dt}=0-2=-2\]
And we already had \[\Rightarrow \dfrac{dt}{dx}=\dfrac{-1}{\text{sin t}}\]
Using \[\begin{align}
& \text{sin}\theta \text{=}\sqrt{1-\text{co}{{\text{s}}^{2}}\theta } \\
& \Rightarrow \dfrac{dt}{dx}=\dfrac{-1}{\sqrt{1-\text{co}{{\text{s}}^{2}}\theta }} \\
\end{align}\]
and value of cos t = x
\[\Rightarrow \dfrac{dt}{dx}=\dfrac{-1}{\sqrt{1-{{\text{x}}^{2}}}}\]
Now, substituting value of $\dfrac{dt}{dx}\text{ and }\dfrac{dv}{dt}$ we get
\[\begin{align}
& \Rightarrow \dfrac{dv}{dx}=\dfrac{dv}{dt}\times \dfrac{dt}{dx} \\
& \Rightarrow \dfrac{dv}{dx}=\dfrac{-2\left( -1 \right)}{\sqrt{1-{{x}^{2}}}} \\
& \Rightarrow \dfrac{dv}{dx}=\dfrac{\left( -2 \right)\left( -1 \right)}{\sqrt{1-{{x}^{2}}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
\end{align}\]
Substituting value of equation (ii) and (iii) in equation (i) we get
\[\begin{align}
& \dfrac{du}{dv}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}} \\
& \dfrac{du}{dv}=\dfrac{\dfrac{-1}{\sqrt{1-{{x}^{2}}}}}{\dfrac{-2\left( -1 \right)}{\sqrt{1-{{x}^{2}}}}} \\
\end{align}\]
Cancelling the common term $\dfrac{-1}{\sqrt{1-{{x}^{2}}}}$ we get:
\[\dfrac{du}{dv}=\dfrac{-1}{2}=-0.5\]
So, the derivative of \[{{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\text{ and }{{\cos }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] when \[x\ne 0\text{ is -0}\text{.5}\Rightarrow \dfrac{-1}{2}\]
Note: While proceeding at the steps of solution of such type of question where complex functions involving inverse trigonometric functions is given like here \[{{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\text{ and }{{\cos }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] is given, go for cancelling the ${{\tan }^{-1}}$ term by trying to obtain $\tan \theta $ inside of ${{\tan }^{-1}}$ so that we can have ${{\tan }^{-1}}\left( \tan \theta \right)=\theta $ then, differentiation becomes easy. Similarly, in ${{\cos }^{-1}}$ term try to obtain cos inside ${{\cos }^{-1}}$ to get ${{\cos }^{-1}}\left( \cos \theta \right)=\theta $ to make differentiation easy.
\[\begin{align}
& \Rightarrow \text{si}{{\text{n}}^{2}}\theta =1-\text{co}{{\text{s}}^{2}}\theta \\
& \Rightarrow \dfrac{\text{sin}\theta }{\text{cos}\theta }=\text{tan}\theta \\
& \Rightarrow 2\text{sin}\theta \text{cos}\theta \text{=sin2}\theta \\
& \Rightarrow \text{sin}\theta =\text{cos}\left( \dfrac{\pi }{2}-\theta \right) \\
\end{align}\]
Chain rule of differentiation when f(x) and g(x) are function of x \[\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right)\]
Complete step-by-step solution:
Let us assume some variables for the given terms.
Let \[u={{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\text{ and v=}{{\cos }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]
We have to differentiate u with respect to v. Then, we will apply basic differentiation rule of du and dv which is given as
\[\dfrac{du}{dv}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
So, firstly to calculate $\dfrac{du}{dv}$ we will separately calculate $\dfrac{du}{dx}\text{ and }\dfrac{dv}{dx}$
That is we will differentiate u with respect to x and v with respect to x.
We have \[u={{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\]
Differentiating both sides with respect to x we get:
\[\dfrac{du}{dx}=\dfrac{d}{dx}={{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\]
To do so, let us assume x = cost in above
\[\dfrac{du}{dx}=\dfrac{d}{dx}\left( \text{ta}{{\text{n}}^{-1}}\left( \dfrac{\sqrt{1-{{\cos }^{2}}t}}{\text{cos t}} \right) \right)\]
We know a trigonometric identity as \[\begin{align}
& \text{si}{{\text{n}}^{2}}\theta +\text{co}{{\text{s}}^{2}}\theta =1 \\
& \Rightarrow \text{si}{{\text{n}}^{2}}\theta =1-\text{co}{{\text{s}}^{2}}\theta \\
\end{align}\]
Taking square root both sides \[\text{sin}\theta \text{=}\sqrt{1-\text{co}{{\text{s}}^{2}}\theta }\]
Using this above by taking $\theta =t$ we get
\[\dfrac{du}{dx}=\dfrac{d}{dx}\left( \text{ta}{{\text{n}}^{-1}}\left( \dfrac{\text{sin t}}{\text{cos t}} \right) \right)\]
Now, we know that \[\dfrac{\text{sin}\theta }{\text{cos}\theta }=\text{tan}\theta \]
Using this in above by taking $\theta =t$ we get
\[\begin{align}
& \dfrac{du}{dx}=\dfrac{d}{dx}\left( \text{ta}{{\text{n}}^{-1}}\left( \text{tan t} \right) \right) \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( \text{t} \right)\text{ as }\left( \text{ta}{{\text{n}}^{-1}}\left( \text{tan }\theta \right) \right)=\theta \\
\end{align}\]
So, finally we have u as a function of t. Then, applying chain rule of differentiation which states that, chain rule of differentiation where f(x) and g(x) are function of x.
\[\dfrac{d}{dx}f\left( g\left( x \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right)\]
In above we get
\[\Rightarrow \dfrac{du}{dx}=\dfrac{du}{dt}\times \dfrac{dt}{dx}\]
We have x = cos t
Differentiate both side with respect to t and using $\dfrac{d}{d\theta }\text{cos}\theta =-\text{sin}\theta $ in above we get:
\[\begin{align}
& \Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( \text{cos t} \right)=-\text{sin t} \\
& \Rightarrow \dfrac{dx}{dt}=-\text{sin t} \\
\end{align}\]
Reversing the above
\[\Rightarrow \dfrac{dt}{dx}=\dfrac{-1}{\text{sin t}}\]
Then, finally we have \[\Rightarrow \dfrac{du}{dx}=\dfrac{du}{dt}\times \dfrac{dt}{dx}\]
Substituting all values obtained above
\[\begin{align}
& \Rightarrow \dfrac{du}{dx}=1\left( \dfrac{-1}{\text{sin t}} \right) \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{-1}{\text{sin t}} \\
\end{align}\]
Using relation stated before that \[\text{sin t} \text{=}\sqrt{1-\text{co}{{\text{s}}^{2}}t}\] in above
\[\begin{align}
& \Rightarrow \dfrac{du}{dx}=\dfrac{-1}{\sqrt{1-\text{co}{{\text{s}}^{2}}t }} \\
& \text{as x=cos t} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
So, we have obtained $\dfrac{du}{dx}$
Similarly we will obtain $\dfrac{dv}{dx}$
\[v=\text{co}{{\text{s}}^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]
Let x = cos t
Then, substituting this value of x in v we get:
\[\Rightarrow v=\text{co}{{\text{s}}^{-1}}\left( 2\text{cos t}\sqrt{1-\text{co}{{\text{s}}^{2}}t} \right)\]
Using identity stated above as \[\text{sin}\theta \text{=}\sqrt{1-\text{co}{{\text{s}}^{2}}\theta }\] we get
\[\Rightarrow v=\text{co}{{\text{s}}^{-1}}\left( 2\text{cos t sin t} \right)\]
Now, we have a trigonometric identity given as
\[\Rightarrow \text{2sin}\theta \text{cos}\theta =\text{sin}2\theta \]
Using this above $\theta =t$ we get
\[\Rightarrow v=\text{co}{{\text{s}}^{-1}}\left( \text{sin2t} \right)\]
We have a relation between $\sin \theta \text{ and cos}\theta $ as
\[\Rightarrow \text{sin}\theta =\text{cos}\left( \dfrac{\pi }{2}-\theta \right)\]
Using this above and $\theta =2t$ we get
\[\begin{align}
& \Rightarrow v={{\cos }^{-1}}\left( \text{cos}\left( \dfrac{\pi }{2}-2t \right) \right) \\
& \Rightarrow v=\dfrac{\pi }{2}-2t \\
\end{align}\]
So, we have obtained v as a function of t, then, $\dfrac{dv}{dx}$ can be obtained by applying chain rule of differentiating stated above
\[\Rightarrow \dfrac{dv}{dx}=\dfrac{dv}{dt}\times \dfrac{dt}{dx}\]
We have \[\Rightarrow v=\dfrac{\pi }{2}-2t\]
Differentiating above with respect to we get:
\[\dfrac{dv}{dt}=0-2=-2\]
And we already had \[\Rightarrow \dfrac{dt}{dx}=\dfrac{-1}{\text{sin t}}\]
Using \[\begin{align}
& \text{sin}\theta \text{=}\sqrt{1-\text{co}{{\text{s}}^{2}}\theta } \\
& \Rightarrow \dfrac{dt}{dx}=\dfrac{-1}{\sqrt{1-\text{co}{{\text{s}}^{2}}\theta }} \\
\end{align}\]
and value of cos t = x
\[\Rightarrow \dfrac{dt}{dx}=\dfrac{-1}{\sqrt{1-{{\text{x}}^{2}}}}\]
Now, substituting value of $\dfrac{dt}{dx}\text{ and }\dfrac{dv}{dt}$ we get
\[\begin{align}
& \Rightarrow \dfrac{dv}{dx}=\dfrac{dv}{dt}\times \dfrac{dt}{dx} \\
& \Rightarrow \dfrac{dv}{dx}=\dfrac{-2\left( -1 \right)}{\sqrt{1-{{x}^{2}}}} \\
& \Rightarrow \dfrac{dv}{dx}=\dfrac{\left( -2 \right)\left( -1 \right)}{\sqrt{1-{{x}^{2}}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
\end{align}\]
Substituting value of equation (ii) and (iii) in equation (i) we get
\[\begin{align}
& \dfrac{du}{dv}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}} \\
& \dfrac{du}{dv}=\dfrac{\dfrac{-1}{\sqrt{1-{{x}^{2}}}}}{\dfrac{-2\left( -1 \right)}{\sqrt{1-{{x}^{2}}}}} \\
\end{align}\]
Cancelling the common term $\dfrac{-1}{\sqrt{1-{{x}^{2}}}}$ we get:
\[\dfrac{du}{dv}=\dfrac{-1}{2}=-0.5\]
So, the derivative of \[{{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\text{ and }{{\cos }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] when \[x\ne 0\text{ is -0}\text{.5}\Rightarrow \dfrac{-1}{2}\]
Note: While proceeding at the steps of solution of such type of question where complex functions involving inverse trigonometric functions is given like here \[{{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)\text{ and }{{\cos }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] is given, go for cancelling the ${{\tan }^{-1}}$ term by trying to obtain $\tan \theta $ inside of ${{\tan }^{-1}}$ so that we can have ${{\tan }^{-1}}\left( \tan \theta \right)=\theta $ then, differentiation becomes easy. Similarly, in ${{\cos }^{-1}}$ term try to obtain cos inside ${{\cos }^{-1}}$ to get ${{\cos }^{-1}}\left( \cos \theta \right)=\theta $ to make differentiation easy.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

