
Differentiate the given function w.r.t x:
${\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}},\dfrac{\pi }{4} < x < \dfrac{{3\pi }}{4}$
Answer
208.8k+ views
Hint: As the function is in the form of variable to the power of variable we apply log on both sides of the equation and then differentiate.
Complete step-by-step answer:
Let $y = {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}$
Take log both the side
$ \Rightarrow \log y = \log {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}$
We know that $\log {a^b} = b\log a$
$ \Rightarrow \log y = \left( {\sin x - \cos x} \right)\log \left( {\sin x - \cos x} \right)$
Now differentiate both the side w.r.t x
Here we use chain rule of differentiation
Differentiation of sinx wrt x is cosx
Differentiation of cosx wrt x is -sinx
Differentiation of logx wrt x is $\dfrac{1}{x}$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{{d\log \left( {\sin x - \cos x} \right)}}{{dx}} + \log \left( {\sin x - \cos x} \right)\dfrac{{d\left( {sinx - \cos x} \right)}}{{dx}}$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{1}{{\left( {\sin x - \cos x} \right)}}\dfrac{{d\left( {\sin x - \cos x} \right)}}{{dx}} + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{1}{{\left( {\sin x - \cos x} \right)}}\left( {\cos x + \sin x} \right) + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\cos x + \sin x} \right) + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = y\left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}\left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
So this is your required answer.
Note: In this type of question always take log on both sides then solve, If there is any function in log then after applying differentiation of log function is again differentiated w.r.t the variable.
Complete step-by-step answer:
Let $y = {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}$
Take log both the side
$ \Rightarrow \log y = \log {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}$
We know that $\log {a^b} = b\log a$
$ \Rightarrow \log y = \left( {\sin x - \cos x} \right)\log \left( {\sin x - \cos x} \right)$
Now differentiate both the side w.r.t x
Here we use chain rule of differentiation
Differentiation of sinx wrt x is cosx
Differentiation of cosx wrt x is -sinx
Differentiation of logx wrt x is $\dfrac{1}{x}$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{{d\log \left( {\sin x - \cos x} \right)}}{{dx}} + \log \left( {\sin x - \cos x} \right)\dfrac{{d\left( {sinx - \cos x} \right)}}{{dx}}$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{1}{{\left( {\sin x - \cos x} \right)}}\dfrac{{d\left( {\sin x - \cos x} \right)}}{{dx}} + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\sin x - \cos x} \right)\dfrac{1}{{\left( {\sin x - \cos x} \right)}}\left( {\cos x + \sin x} \right) + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\cos x + \sin x} \right) + \log \left( {\sin x - \cos x} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = y\left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {\left( {\sin x - \cos x} \right)^{\left( {\sin x - \cos x} \right)}}\left( {1 + log\left( {\sin x - \cos x} \right)} \right)\left( {\cos x + \sin x} \right)$
So this is your required answer.
Note: In this type of question always take log on both sides then solve, If there is any function in log then after applying differentiation of log function is again differentiated w.r.t the variable.
Recently Updated Pages
JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

