
When the diameter of the conductor is doubled, then its resistance:
A) Decreases two times
B) Decreases four times
C) Decreases six times
D) Increases four times
Answer
219.6k+ views
Hint: Resistance of the conductor is directly proportional to the resistivity and length of the conductor, and inversely proportional to the area of the conductor.
Formula for resistance is given by:
$R = \rho \dfrac{l}{A}$ (R is the resistance, l is the length of the conductor, A is the area of the conductor, $\rho $ is the resistivity of the conductor)
Using the above relation we will find the change in resistor when diameter is doubled.
Complete step by step solution:
Let's discuss some points about resistors.
Resistance is the measure of the opposition of the current flow in an electrical circuit. Resistance is measured in ohms. Almost all the materials show some opposition to the flow of current which are classified as conductors and insulators.
Conductors are the material which has the maximum flow of current and insulators are the one which allow almost negligible flow of current through it.
Now we will perform the calculation part:
As we know resistance is directly proportional to the length of the conductor and inversely proportional to the area.
$R = \rho \dfrac{l}{A}$........................(1)
From this relation we can conclude that resistance is inversely proportional to area A of the conductor.
Area of the conductor is directly proportional to the diameter of the conductor, which is given by:
$A = \pi {(\dfrac{d}{2})^2}$
When diameter is doubled, then area becomes
$ \Rightarrow A = \pi {(\dfrac{{2d}}{2})^2}$
$ \Rightarrow A = \pi {(d)^2}$
Which is:
$\Rightarrow A = \pi {(2r)^2} $
$ \Rightarrow A = 4\pi {r^2} $
Area of the conductor becomes 4 times the area of the conductor without doubling the diameter.
Area of the conductor is inversely proportional to the resistance , therefore resistance will become
$R = \rho \dfrac{l}{{4A}}$
Thus, we can say that new resistance will decrease four times.
Hence, option (B) is correct.
Note: Resistance has the properties of limiting current which used in the electric motors such Induction motor and DC motors. Split phase induction motors use an extra resistance to limit the starting current in the motor and increase the starting torque. Similarly, DC series motors use resistance in the armature winding to control the starting current.
Formula for resistance is given by:
$R = \rho \dfrac{l}{A}$ (R is the resistance, l is the length of the conductor, A is the area of the conductor, $\rho $ is the resistivity of the conductor)
Using the above relation we will find the change in resistor when diameter is doubled.
Complete step by step solution:
Let's discuss some points about resistors.
Resistance is the measure of the opposition of the current flow in an electrical circuit. Resistance is measured in ohms. Almost all the materials show some opposition to the flow of current which are classified as conductors and insulators.
Conductors are the material which has the maximum flow of current and insulators are the one which allow almost negligible flow of current through it.
Now we will perform the calculation part:
As we know resistance is directly proportional to the length of the conductor and inversely proportional to the area.
$R = \rho \dfrac{l}{A}$........................(1)
From this relation we can conclude that resistance is inversely proportional to area A of the conductor.
Area of the conductor is directly proportional to the diameter of the conductor, which is given by:
$A = \pi {(\dfrac{d}{2})^2}$
When diameter is doubled, then area becomes
$ \Rightarrow A = \pi {(\dfrac{{2d}}{2})^2}$
$ \Rightarrow A = \pi {(d)^2}$
Which is:
$\Rightarrow A = \pi {(2r)^2} $
$ \Rightarrow A = 4\pi {r^2} $
Area of the conductor becomes 4 times the area of the conductor without doubling the diameter.
Area of the conductor is inversely proportional to the resistance , therefore resistance will become
$R = \rho \dfrac{l}{{4A}}$
Thus, we can say that new resistance will decrease four times.
Hence, option (B) is correct.
Note: Resistance has the properties of limiting current which used in the electric motors such Induction motor and DC motors. Split phase induction motors use an extra resistance to limit the starting current in the motor and increase the starting torque. Similarly, DC series motors use resistance in the armature winding to control the starting current.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction Explained: Definition, Examples & Science for Students

Analytical Method of Vector Addition Explained Simply

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

