When the diameter of the conductor is doubled, then its resistance:
A) Decreases two times
B) Decreases four times
C) Decreases six times
D) Increases four times
Answer
Verified
116.1k+ views
Hint: Resistance of the conductor is directly proportional to the resistivity and length of the conductor, and inversely proportional to the area of the conductor.
Formula for resistance is given by:
$R = \rho \dfrac{l}{A}$ (R is the resistance, l is the length of the conductor, A is the area of the conductor, $\rho $ is the resistivity of the conductor)
Using the above relation we will find the change in resistor when diameter is doubled.
Complete step by step solution:
Let's discuss some points about resistors.
Resistance is the measure of the opposition of the current flow in an electrical circuit. Resistance is measured in ohms. Almost all the materials show some opposition to the flow of current which are classified as conductors and insulators.
Conductors are the material which has the maximum flow of current and insulators are the one which allow almost negligible flow of current through it.
Now we will perform the calculation part:
As we know resistance is directly proportional to the length of the conductor and inversely proportional to the area.
$R = \rho \dfrac{l}{A}$........................(1)
From this relation we can conclude that resistance is inversely proportional to area A of the conductor.
Area of the conductor is directly proportional to the diameter of the conductor, which is given by:
$A = \pi {(\dfrac{d}{2})^2}$
When diameter is doubled, then area becomes
$ \Rightarrow A = \pi {(\dfrac{{2d}}{2})^2}$
$ \Rightarrow A = \pi {(d)^2}$
Which is:
$\Rightarrow A = \pi {(2r)^2} $
$ \Rightarrow A = 4\pi {r^2} $
Area of the conductor becomes 4 times the area of the conductor without doubling the diameter.
Area of the conductor is inversely proportional to the resistance , therefore resistance will become
$R = \rho \dfrac{l}{{4A}}$
Thus, we can say that new resistance will decrease four times.
Hence, option (B) is correct.
Note: Resistance has the properties of limiting current which used in the electric motors such Induction motor and DC motors. Split phase induction motors use an extra resistance to limit the starting current in the motor and increase the starting torque. Similarly, DC series motors use resistance in the armature winding to control the starting current.
Formula for resistance is given by:
$R = \rho \dfrac{l}{A}$ (R is the resistance, l is the length of the conductor, A is the area of the conductor, $\rho $ is the resistivity of the conductor)
Using the above relation we will find the change in resistor when diameter is doubled.
Complete step by step solution:
Let's discuss some points about resistors.
Resistance is the measure of the opposition of the current flow in an electrical circuit. Resistance is measured in ohms. Almost all the materials show some opposition to the flow of current which are classified as conductors and insulators.
Conductors are the material which has the maximum flow of current and insulators are the one which allow almost negligible flow of current through it.
Now we will perform the calculation part:
As we know resistance is directly proportional to the length of the conductor and inversely proportional to the area.
$R = \rho \dfrac{l}{A}$........................(1)
From this relation we can conclude that resistance is inversely proportional to area A of the conductor.
Area of the conductor is directly proportional to the diameter of the conductor, which is given by:
$A = \pi {(\dfrac{d}{2})^2}$
When diameter is doubled, then area becomes
$ \Rightarrow A = \pi {(\dfrac{{2d}}{2})^2}$
$ \Rightarrow A = \pi {(d)^2}$
Which is:
$\Rightarrow A = \pi {(2r)^2} $
$ \Rightarrow A = 4\pi {r^2} $
Area of the conductor becomes 4 times the area of the conductor without doubling the diameter.
Area of the conductor is inversely proportional to the resistance , therefore resistance will become
$R = \rho \dfrac{l}{{4A}}$
Thus, we can say that new resistance will decrease four times.
Hence, option (B) is correct.
Note: Resistance has the properties of limiting current which used in the electric motors such Induction motor and DC motors. Split phase induction motors use an extra resistance to limit the starting current in the motor and increase the starting torque. Similarly, DC series motors use resistance in the armature winding to control the starting current.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics