
\[\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}\] is equal to
A. \[\tan {55^0}\]
B. \[\cot {55^0}\]
C. \[ - \tan {35^0}\]
D. \[ - \cot {35^0}\]
Answer
232.8k+ views
Hint: In this problem just multiply with the suitable trigonometric ratio and convert the given equation in terms of \[\tan {\text{ or }}\cot \] by using the simple trigonometric formulae since the given options are in terms of \[\tan {\text{ and }}\cot \].
Complete step-by-step answer:
Given \[\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}\]
Multiplying and dividing with \[\cos {10^0}\] then we have
\[
\Rightarrow \dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}}\left( {\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}} \right) \\
\\
\dfrac{{ \Rightarrow \dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}} + \dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}}}}{{\dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}} - \dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}}}} \\
\]
Since \[\dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}} = \tan {10^0}\]
\[ \Rightarrow \dfrac{{1 + \tan {{10}^0}}}{{1 - \tan {{10}^0}}}\]
We can write \[\tan {45^0}\]in place of \[1\] as \[\tan {45^0} = 1\] then we get
\[ \Rightarrow \dfrac{{\tan {{45}^0} + \tan {{10}^0}}}{{1 - \tan {{45}^0}\tan {{10}^0}}}\]
By using the formulae \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] we have
\[
\Rightarrow \dfrac{{\tan {{45}^0} + \tan {{10}^0}}}{{1 - \tan {{45}^0}\tan {{10}^0}}} = \tan \left( {{{45}^0} + {{10}^0}} \right) \\
\\
{\text{ = tan5}}{{\text{5}}^0} \\
\]
Thus, \[\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}\] is equal to \[\tan {55^0}\]
Therefore, the answer is option A \[\tan {55^0}\]
Note: In this problem there are chances to change the options by converting \[\tan \]into \[\cot \]or from\[\tan \] to \[\cot \]. Then we have to change them accordingly. And try to remember more formulae from the trigonometry part so that you can make problems easier.
Complete step-by-step answer:
Given \[\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}\]
Multiplying and dividing with \[\cos {10^0}\] then we have
\[
\Rightarrow \dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}}\left( {\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}} \right) \\
\\
\dfrac{{ \Rightarrow \dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}} + \dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}}}}{{\dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}} - \dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}}}} \\
\]
Since \[\dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}} = \tan {10^0}\]
\[ \Rightarrow \dfrac{{1 + \tan {{10}^0}}}{{1 - \tan {{10}^0}}}\]
We can write \[\tan {45^0}\]in place of \[1\] as \[\tan {45^0} = 1\] then we get
\[ \Rightarrow \dfrac{{\tan {{45}^0} + \tan {{10}^0}}}{{1 - \tan {{45}^0}\tan {{10}^0}}}\]
By using the formulae \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] we have
\[
\Rightarrow \dfrac{{\tan {{45}^0} + \tan {{10}^0}}}{{1 - \tan {{45}^0}\tan {{10}^0}}} = \tan \left( {{{45}^0} + {{10}^0}} \right) \\
\\
{\text{ = tan5}}{{\text{5}}^0} \\
\]
Thus, \[\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}\] is equal to \[\tan {55^0}\]
Therefore, the answer is option A \[\tan {55^0}\]
Note: In this problem there are chances to change the options by converting \[\tan \]into \[\cot \]or from\[\tan \] to \[\cot \]. Then we have to change them accordingly. And try to remember more formulae from the trigonometry part so that you can make problems easier.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

