
Determine \[k\] so that \[3k-2, 2k^{2}-5k+8\] and \[4k+3\] are the consecutive terms of an AP? For what value of \[k (k>0)\], the area of triangle with vertices \[(k,2)\], \[(3k,2)\] and \[(2,5)\] is \[6\,\text{sq.units}\].
Answer
220.2k+ views
Hint: If \[a\], \[b\] and \[c\] are the consecutive terms of an AP, then using the properties of arithmetic progression, \[b-a = c-b\].
Also, the area of the triangle with the vertices \[(x_{1},y_{1})\], \[(x_{2},y_{2})\] and \[(x_{3},y_{3})\] is given by the formula \[A = \dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2}(y_{3}-y_{1}) + x_{3}(y_{1}-y_{2})]\].
Complete step-by-step answer:
Given the terms \[3k-2, 2k^{2}-5k+8\] and \[4k+3\] are the consecutive terms of an AP.
Using the properties of arithmetic progression, the difference between the consecutive terms are equal.
This implies,
\[2k^{2}-5k+8-(3k-2) = 4k+3-(2k^{2}-5k+8)\]
Solving them as follows:
\[\begin{align*}2k^{2}-5k+8-(3k-2) &= 4k+3-(2k^{2}-5k+8)\\ 2k^{2}-8k+10 &= -2k^{2}+9k-5\\
4k^{2}-17k+15 &= 0\\ 4k^{2}-12k-5k+15 &=0\\ 4k(k-3)+3(k-3) &=0\\ (k-3)(4k+3) &=0\\ k &=3, -\dfrac{3}{4}\end{align*}\]
So, the value of \[k = 3, -\dfrac{3}{4}\].
Now, the vertices of the triangle are \[(k,2)\], \[(3k,2)\] and \[(2,5)\], and its area is \[6\,\text{sq.u}\].
So, substituting the values into the formula for the area of the triangle, \[A = \dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2}(y_{3}-y_{1}) + x_{3}(y_{1}-y_{2})]\], it gives,
\[\begin{align*}6 &= \dfrac{1}{2}[k(2-5)+3k(5-2)+2(2-2)]\\ 12 &= -3k+9k\\ 12 &= 6k\\ k&= 2\end{align*}\]
Therefore, the value of \[k\] is 2.
Note: The area of the triangle can also be evaluated using the lengths of the sides of the triangle, and then using Heron's formula to calculate the area.
Also, the area of the triangle with the vertices \[(x_{1},y_{1})\], \[(x_{2},y_{2})\] and \[(x_{3},y_{3})\] is given by the formula \[A = \dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2}(y_{3}-y_{1}) + x_{3}(y_{1}-y_{2})]\].
Complete step-by-step answer:
Given the terms \[3k-2, 2k^{2}-5k+8\] and \[4k+3\] are the consecutive terms of an AP.
Using the properties of arithmetic progression, the difference between the consecutive terms are equal.
This implies,
\[2k^{2}-5k+8-(3k-2) = 4k+3-(2k^{2}-5k+8)\]
Solving them as follows:
\[\begin{align*}2k^{2}-5k+8-(3k-2) &= 4k+3-(2k^{2}-5k+8)\\ 2k^{2}-8k+10 &= -2k^{2}+9k-5\\
4k^{2}-17k+15 &= 0\\ 4k^{2}-12k-5k+15 &=0\\ 4k(k-3)+3(k-3) &=0\\ (k-3)(4k+3) &=0\\ k &=3, -\dfrac{3}{4}\end{align*}\]
So, the value of \[k = 3, -\dfrac{3}{4}\].
Now, the vertices of the triangle are \[(k,2)\], \[(3k,2)\] and \[(2,5)\], and its area is \[6\,\text{sq.u}\].
So, substituting the values into the formula for the area of the triangle, \[A = \dfrac{1}{2}[x_{1}(y_{2}-y_{3}) + x_{2}(y_{3}-y_{1}) + x_{3}(y_{1}-y_{2})]\], it gives,
\[\begin{align*}6 &= \dfrac{1}{2}[k(2-5)+3k(5-2)+2(2-2)]\\ 12 &= -3k+9k\\ 12 &= 6k\\ k&= 2\end{align*}\]
Therefore, the value of \[k\] is 2.
Note: The area of the triangle can also be evaluated using the lengths of the sides of the triangle, and then using Heron's formula to calculate the area.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

