
When the current in the portion of the circuit shown in the figure is \[2\;{\text{A}}\] and increasing at rate of \[1\;{\text{A/s}}\], the measured potential difference \[{V_{ab}} = 8\;V\]. However when the current is \[2\;{\text{A}}\] and increasing at the rate of \[1\;{\text{A/s}}\], The measured potential difference \[{V_{ab}} = 4\;V\]. The values of \[{\text{R}}\] and \[{\text{L}}\] are:

A) \[3\;\Omega \] and \[2\;{\text{H}}\] respectively.
B) \[3\;\Omega \] and \[3\;{\text{H}}\] respectively.
C) \[2\;\Omega \] and \[1\;{\text{H}}\] respectively.
D) \[3\;\Omega \] and \[1\;{\text{H}}\] respectively.
Answer
123.3k+ views
Hint: In this question, use the Kirchhoff’s law to calculate the values of resistance and the inductance of the circuit. According to Kirchhoff's law potential difference is equal to the product of current and resistance and sum of the inductance.
Complete step by step answer:
Let us consider figure (1), we have given a circuit with current of \[2\;{\text{A}}\] and increasing at rate of \[1\;{\text{A/s}}\], the measured potential difference \[{V_{ab}} = 8\;V\]. And when the current is \[2\;{\text{A}}\] is decreasing at the rate of \[1\;{\text{A/s}}\] the measured potential difference \[{V_{ab}} = 4\;V\].
As we know, Kirchhoff’s law states that the current flowing inside the circuit and outside the circuit will be the same. Kirchhoff’s law is also known as the conservation law of the current.
Now, we calculate the value for the potential difference as,
\[ \Rightarrow {V_A} - IR - L\dfrac{{dI}}{{dt}} = {V_b}\]
After simplification we get,
\[ \Rightarrow {V_A} - {V_b} = IR + L\dfrac{{dI}}{{dt}}\]
Now we substitute the value of current and the potential difference,
\[8 = 2R + L\left( 1 \right)\]
Simplify the equation and we get
\[8 = 2R + L......\left( 1 \right)\]
Simplify the above equation again and get,
\[ \Rightarrow \dfrac{{8 - L}}{2} = R\]
Now, we calculate the value for the potential difference \[{V_{ab}} = 4\;V\]
\[ \Rightarrow {V_A} - IR - L\dfrac{{dI}}{{dt}} = {V_b}\]
After simplification we get,
\[ \Rightarrow {V_A} - {V_b} = IR + L\dfrac{{dI}}{{dt}}\]
Now, we substitute the value of current and the potential difference,
\[ \Rightarrow 4 = 2R + L\left( { - 1} \right)\]
Simplify the equation and we get
\[ \Rightarrow 4 = 2R - L\]
Put the value of \[R\] in equation in the above equation,
\[ \Rightarrow 4 = 2\left( {\dfrac{{8 - L}}{2}} \right) - L\]
After simplification we get,
\[\therefore L = 2\;{\text{H}}\]
Now, we substitute the value of \[L\] in equation \[\left( 1 \right)\]
\[ \Rightarrow 8 = 2R + 2\]
After simplification we get,
\[\therefore R = 3\;\Omega \]
Therefore, The value of \[{\text{R}}\] is \[3\;\Omega \] and the value of \[{\text{L}}\] is \[2\;{\text{H}}\].
So, the option \[\left( A \right)\] is correct.
Note: In this question, do not forget to write the SI unit of the frequency. And the SI unit of the inductance is Henry\[\left( {\text{H}} \right)\].Conservation of the current law means the current inside and outside is the same.
Complete step by step answer:
Let us consider figure (1), we have given a circuit with current of \[2\;{\text{A}}\] and increasing at rate of \[1\;{\text{A/s}}\], the measured potential difference \[{V_{ab}} = 8\;V\]. And when the current is \[2\;{\text{A}}\] is decreasing at the rate of \[1\;{\text{A/s}}\] the measured potential difference \[{V_{ab}} = 4\;V\].
As we know, Kirchhoff’s law states that the current flowing inside the circuit and outside the circuit will be the same. Kirchhoff’s law is also known as the conservation law of the current.
Now, we calculate the value for the potential difference as,
\[ \Rightarrow {V_A} - IR - L\dfrac{{dI}}{{dt}} = {V_b}\]
After simplification we get,
\[ \Rightarrow {V_A} - {V_b} = IR + L\dfrac{{dI}}{{dt}}\]
Now we substitute the value of current and the potential difference,
\[8 = 2R + L\left( 1 \right)\]
Simplify the equation and we get
\[8 = 2R + L......\left( 1 \right)\]
Simplify the above equation again and get,
\[ \Rightarrow \dfrac{{8 - L}}{2} = R\]
Now, we calculate the value for the potential difference \[{V_{ab}} = 4\;V\]
\[ \Rightarrow {V_A} - IR - L\dfrac{{dI}}{{dt}} = {V_b}\]
After simplification we get,
\[ \Rightarrow {V_A} - {V_b} = IR + L\dfrac{{dI}}{{dt}}\]
Now, we substitute the value of current and the potential difference,
\[ \Rightarrow 4 = 2R + L\left( { - 1} \right)\]
Simplify the equation and we get
\[ \Rightarrow 4 = 2R - L\]
Put the value of \[R\] in equation in the above equation,
\[ \Rightarrow 4 = 2\left( {\dfrac{{8 - L}}{2}} \right) - L\]
After simplification we get,
\[\therefore L = 2\;{\text{H}}\]
Now, we substitute the value of \[L\] in equation \[\left( 1 \right)\]
\[ \Rightarrow 8 = 2R + 2\]
After simplification we get,
\[\therefore R = 3\;\Omega \]
Therefore, The value of \[{\text{R}}\] is \[3\;\Omega \] and the value of \[{\text{L}}\] is \[2\;{\text{H}}\].
So, the option \[\left( A \right)\] is correct.
Note: In this question, do not forget to write the SI unit of the frequency. And the SI unit of the inductance is Henry\[\left( {\text{H}} \right)\].Conservation of the current law means the current inside and outside is the same.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Physics Average Value and RMS Value JEE Main 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics
