
Consider the following transformations
(I) $Xe{{F}_{6}}+NaF\to N{{a}^{+}}{{[Xe{{F}_{7}}]}^{-}}$
(II) $2PC{{l}_{5}}(s)\to {{[PC{{l}_{4}}]}^{+}}{{[PC{{l}_{5}}]}^{-}}$
(III) ${{[Al{{({{H}_{2}}O)}_{6}}]}^{3+}}+{{H}_{2}}O\to {{[Al{{({{H}_{2}}O)}_{5}}OH]}^{2+}}+{{H}_{3}}{{O}^{+}}$
Possible transformation is:
(A) I, II, III
(B) I, III
(C) I, II
(D) II, III
Answer
126.9k+ views
Hint: One of the basic fundamental rules to check whether a transformation or a reaction is possible or not is by checking whether the elements in the reactant and products are balanced or not.
Complete step by step solution:
-In the first option, the reaction is between Xenon fluoride and Sodium fluoride which gives an unstable compound. Xenon fluoride here acts as a fluoride donor and gives a balanced equation.
$Xe{{F}_{6}}+NaF\to N{{a}^{+}}{{[Xe{{F}_{7}}]}^{-}}$
-In the second option, the phosphorus pentachloride is undergoing self ionization in the polar solutions. The reaction is also balanced. This is a reversible reaction. In dilute solutions, the reaction occurs in the forward direction, but at higher concentrations, the reaction in the backward direction becomes more prevalent. The \[PC{{l}_{5}}\]in the reactant is in $s{{p}^{3}}d$hybridization, while ${{[PC{{l}_{4}}]}^{+}}$and ${{[PC{{l}_{5}}]}^{-}}$in the products are in $s{{p}^{3}}$ and $s{{p}^{3}}{{d}^{2}}$ hybridization respectively.
$2PC{{l}_{5}}(s)\to {{[PC{{l}_{4}}]}^{+}}{{[PC{{l}_{5}}]}^{-}}$
-In the third option, Aluminium Hexa-aqua complex ion on dissociation leads to the formation of the conjugate base that is ${{[Al{{({{H}_{2}}O)}_{5}}OH]}^{2+}}$and a proton which combines with water molecule forming a hydronium ion. $A{{l}^{3+}}$being highly charged and small attracts water molecule and binds via dative covalent bonds and it also attracts the lone pair of electrons from the O-H bond and the water molecule splits into a proton and a hydroxide ion.
${{[Al{{({{H}_{2}}O)}_{6}}]}^{3+}}+{{H}_{2}}O\to {{[Al{{({{H}_{2}}O)}_{5}}OH]}^{2+}}+{{H}_{3}}{{O}^{+}}$
So, option (A) is correct.
Note: $Xe{{F}_{6}}$is solid at room and it readily sublimes into yellow vapours. It can be prepared by heating $Xe{{F}_{2}}$ at about $300{}^\circ C$and 60 atm pressure, but with the use of $Ni{{F}_{2}}$as a catalyst, the temperature can be lowered to $120{}^\circ C$. $PC{{l}_{5}}$is one of the most important phosphorus chlorides which is a colourless, water-sensitive, and moisture-sensitive solid chemical compound. It is used as a chlorinating reagent. It is highly corrosive and reacts violently with water, this is a very dangerous substance.
Complete step by step solution:
-In the first option, the reaction is between Xenon fluoride and Sodium fluoride which gives an unstable compound. Xenon fluoride here acts as a fluoride donor and gives a balanced equation.
$Xe{{F}_{6}}+NaF\to N{{a}^{+}}{{[Xe{{F}_{7}}]}^{-}}$
-In the second option, the phosphorus pentachloride is undergoing self ionization in the polar solutions. The reaction is also balanced. This is a reversible reaction. In dilute solutions, the reaction occurs in the forward direction, but at higher concentrations, the reaction in the backward direction becomes more prevalent. The \[PC{{l}_{5}}\]in the reactant is in $s{{p}^{3}}d$hybridization, while ${{[PC{{l}_{4}}]}^{+}}$and ${{[PC{{l}_{5}}]}^{-}}$in the products are in $s{{p}^{3}}$ and $s{{p}^{3}}{{d}^{2}}$ hybridization respectively.
$2PC{{l}_{5}}(s)\to {{[PC{{l}_{4}}]}^{+}}{{[PC{{l}_{5}}]}^{-}}$
-In the third option, Aluminium Hexa-aqua complex ion on dissociation leads to the formation of the conjugate base that is ${{[Al{{({{H}_{2}}O)}_{5}}OH]}^{2+}}$and a proton which combines with water molecule forming a hydronium ion. $A{{l}^{3+}}$being highly charged and small attracts water molecule and binds via dative covalent bonds and it also attracts the lone pair of electrons from the O-H bond and the water molecule splits into a proton and a hydroxide ion.
${{[Al{{({{H}_{2}}O)}_{6}}]}^{3+}}+{{H}_{2}}O\to {{[Al{{({{H}_{2}}O)}_{5}}OH]}^{2+}}+{{H}_{3}}{{O}^{+}}$
So, option (A) is correct.
Note: $Xe{{F}_{6}}$is solid at room and it readily sublimes into yellow vapours. It can be prepared by heating $Xe{{F}_{2}}$ at about $300{}^\circ C$and 60 atm pressure, but with the use of $Ni{{F}_{2}}$as a catalyst, the temperature can be lowered to $120{}^\circ C$. $PC{{l}_{5}}$is one of the most important phosphorus chlorides which is a colourless, water-sensitive, and moisture-sensitive solid chemical compound. It is used as a chlorinating reagent. It is highly corrosive and reacts violently with water, this is a very dangerous substance.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

Know The Difference Between Fluid And Liquid

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Clemmenson and Wolff Kishner Reductions for JEE

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic

Other Pages
Organic Chemistry Class 11 Notes: CBSE Chemistry Chapter 8

Redox reaction Class 11 Notes: CBSE Chapter 7

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 8 Redox Reactions

Elastic Collisions in One Dimension - JEE Important Topic

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 7 Equilibrium
