Answer

Verified

53.1k+ views

**Hint:**The minimum distance between the Sun and the body will be when the body velocity is perpendicular to its position vector relative to the Sun.

**Complete step by step answer:**

Step 1: Sketch an appropriate figure and mark the point of minimum distance between the Sun and the body.

Step 2: Use conservation of angular momentum to obtain an expression for the velocity of the body when it is at a minimum distance to the Sun.

The body moves with an initial velocity ${v_0}$ from point A to point B. At point B, the body’ s velocity $v$ is perpendicular to its position vector relative to the Sun and thus at point B, minimum distance ${r_{min}}$ exists between the Sun and the body.

At both points A and B, the angular momentum must be conserved.

By conservation of angular momentum, we have ${L_A} = {L_B}$.

Angular momentum at A is ${L_A} = l \times m{v_0} = m{v_0}l\sin \theta $

where, $m{v_0}$ is the linear momentum and $l$ is the distance from the rotation axis.

Since, $l$ is assumed to be perpendicular to the body’s linear momentum $(\theta = 0)$

we have the angular momentum at A as, ${L_A} = m{v_0}l$.

Angular momentum at B is ${L_B} = {r_{\min }} \times mv = mv{r_{\min }}$

where, $mv$ is the linear momentum at B and ${r_{min}}$ is the distance from the rotation axis. At B, ${r_{\min }}$ is perpendicular to the velocity v (and linear momentum).

Rearranging the above equation, we get, $v = \dfrac{{{v_0}l}}{{{r_{\min }}}}$.

Step 3: Use conservation of energy to find the minimum distance ${r_{\min }}$ between the sun and the body.

According to the conservation of energy, the total energy at A (sum of the potential energy and kinetic energy of the body) must equal the total energy at B.

At A, potential energy of the body is zero since it is far away from the Sun.

At A, kinetic energy of the body at A is $\dfrac{1}{2}m{v_0}^2$.

At B, gravitational potential energy exists and is given by, $\dfrac{{ - GMm}}{{{r_{\min }}}}$ where $G$is the gravitational constant, $M$ is the mass of the Sun, $m$ is the mass of the body and ${r_{\min }}$ is the distance between the Sun and the body.

At B, the kinetic energy is given as $\dfrac{1}{2}m{v^2}$.

By conservation of energy, $\dfrac{1}{2}m{v_0}^2 = \dfrac{1}{2}m{v^2} - \dfrac{{GMm}}{{{r_{\min }}}}$.

On simplifying we get, $\dfrac{{{v^2}}}{2} - \dfrac{{{v_0}^2}}{2} = \dfrac{{GM}}{{{r_{\min }}}}$.

Substitute for $v = \dfrac{{{v_0}l}}{{{r_{\min }}}}$ in the above equation and then rearranging, $\dfrac{{{v_0}^2}}{2} = \dfrac{{{v_0}^2{l^2}}}{{2{r_{\min }}^2}} - \dfrac{{GM}}{{{r_{\min }}}}$.

Multiply throughout by $2{r_{\min }}^2$ to get a quadratic equation in ${r_{\min }}$.

i.e., ${v_0}^2{r_{\min }}^2 = {v_0}^2{l^2} - 2GM{r_{\min }}$ or ${v_0}^2{r_{\min }}^2 + 2GM{r_{\min }} - {v_0}^2{l^2} = 0$.

Step 4: The above equation is a quadratic equation in ${r_{\min }}$. Roots of the equation can be obtained using the quadratic formula.

We have, ${v_0}^2{r_{\min }}^2 + 2GM{r_{\min }} - {v_0}^2{l^2} = 0$ is same as $a{x^2} + bx + c = 0$.

Here, $x = {r_{\min }}{\text{, }}a = {v_0}^2{\text{, }}b = 2GM{\text{ and }}c = - {v_0}^2{l^2}$.

Applying the quadratic formula, ${r_{\min }} = \dfrac{{ - 2GM \pm \sqrt {4{G^2}{M^2} + 4{v_0}^4{l^2}} }}{{2{v_0}^2}}$.

Simplifying we get, ${r_{\min }} = \dfrac{{ - 2GM}}{{2{v_0}^2}} \pm \dfrac{1}{{2{v_0}^2}}\sqrt {4{G^2}{M^2}\left( {1 + \dfrac{{{v_0}^2{l^2}}}{{{G^2}{M^2}}}} \right)} $.

Cancel the common terms in numerator and denominator to get, ${r_{\min }} = \dfrac{{ - GM}}{{{v_0}^2}} \pm \dfrac{{GM}}{{{v_0}^2}}\sqrt {\left( {1 + \dfrac{{{v_0}^2{l^2}}}{{{G^2}{M^2}}}} \right)} $.

Taking $\dfrac{{GM}}{{{v_0}^2}}$ from the terms, we have

${r_{\min }} = \dfrac{{GM}}{{{v_0}^2}}\left[ { - 1 \pm \left( {\sqrt {\left( {1 + \dfrac{{{v_0}^2{l^2}}}{{{G^2}{M^2}}}} \right)} } \right)} \right]$.

We only take the positive root of ${r_{\min }}$.

i.e., we have ${r_{\min }} = \dfrac{{GM}}{{{v_0}^2}}\left[ {\sqrt {\left( {1 + \dfrac{{{v_0}^2{l^2}}}{{{G^2}{M^2}}}} \right)} - 1} \right]$.

**Note:**The motion of the cosmic body is angular or rotational as shown in the figure. Thus, angular momentum is the term of interest as the relation for angular momentum involves the distance $r$ from the rotational axis. Here this distance is the distance between the Sun and the cosmic body. Once the roots of ${r_{\min }}$ (positive and negative) are obtained, we consider the positive root of ${r_{\min }}$ as it is a measure of distance and distance must not be a negative value.

Recently Updated Pages

In a family each daughter has the same number of brothers class 10 maths JEE_Main

Which is not the correct advantage of parallel combination class 10 physics JEE_Main

If 81 is the discriminant of 2x2 + 5x k 0 then the class 10 maths JEE_Main

What is the value of cos 2Aleft 3 4cos 2A right2 + class 10 maths JEE_Main

If left dfracleft 2sinalpha rightleft 1 + cosalpha class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

Other Pages

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main

Vant Hoff factor when benzoic acid is dissolved in class 12 chemistry JEE_Main