
Consider the figure given below. A cosmic body C moves to the Sun with velocity ${v_0}$ (when far from the Sun) and aiming parameter $l$, the arm of the vector $\overrightarrow {{v_0}} $, relative to the centre of the Sun. Find the minimum distance by which this body will get to the Sun.

Answer
232.8k+ views
Hint: The minimum distance between the Sun and the body will be when the body velocity is perpendicular to its position vector relative to the Sun.
Complete step by step answer:
Step 1: Sketch an appropriate figure and mark the point of minimum distance between the Sun and the body.

Step 2: Use conservation of angular momentum to obtain an expression for the velocity of the body when it is at a minimum distance to the Sun.
Step 3: Use conservation of energy to find the minimum distance ${r_{\min }}$ between the sun and the body.
Step 4: The above equation is a quadratic equation in ${r_{\min }}$. Roots of the equation can be obtained using the quadratic formula.
We have, ${v_0}^2{r_{\min }}^2 + 2GM{r_{\min }} - {v_0}^2{l^2} = 0$ is same as $a{x^2} + bx + c = 0$.
Here, $x = {r_{\min }}{\text{, }}a = {v_0}^2{\text{, }}b = 2GM{\text{ and }}c = - {v_0}^2{l^2}$.
Applying the quadratic formula, ${r_{\min }} = \dfrac{{ - 2GM \pm \sqrt {4{G^2}{M^2} + 4{v_0}^4{l^2}} }}{{2{v_0}^2}}$.
Simplifying we get, ${r_{\min }} = \dfrac{{ - 2GM}}{{2{v_0}^2}} \pm \dfrac{1}{{2{v_0}^2}}\sqrt {4{G^2}{M^2}\left( {1 + \dfrac{{{v_0}^2{l^2}}}{{{G^2}{M^2}}}} \right)} $.
Note: The motion of the cosmic body is angular or rotational as shown in the figure. Thus, angular momentum is the term of interest as the relation for angular momentum involves the distance $r$ from the rotational axis. Here this distance is the distance between the Sun and the cosmic body. Once the roots of ${r_{\min }}$ (positive and negative) are obtained, we consider the positive root of ${r_{\min }}$ as it is a measure of distance and distance must not be a negative value.
Complete step by step answer:
Step 1: Sketch an appropriate figure and mark the point of minimum distance between the Sun and the body.

Step 2: Use conservation of angular momentum to obtain an expression for the velocity of the body when it is at a minimum distance to the Sun.
The body moves with an initial velocity ${v_0}$ from point A to point B. At point B, the body’ s velocity $v$ is perpendicular to its position vector relative to the Sun and thus at point B, minimum distance ${r_{min}}$ exists between the Sun and the body.
At both points A and B, the angular momentum must be conserved.
By conservation of angular momentum, we have ${L_A} = {L_B}$.
Angular momentum at A is ${L_A} = l \times m{v_0} = m{v_0}l\sin \theta $
where, $m{v_0}$ is the linear momentum and $l$ is the distance from the rotation axis.
Since, $l$ is assumed to be perpendicular to the body’s linear momentum $(\theta = 0)$
we have the angular momentum at A as, ${L_A} = m{v_0}l$.
Angular momentum at B is ${L_B} = {r_{\min }} \times mv = mv{r_{\min }}$
where, $mv$ is the linear momentum at B and ${r_{min}}$ is the distance from the rotation axis. At B, ${r_{\min }}$ is perpendicular to the velocity v (and linear momentum).
Rearranging the above equation, we get, $v = \dfrac{{{v_0}l}}{{{r_{\min }}}}$.
Step 3: Use conservation of energy to find the minimum distance ${r_{\min }}$ between the sun and the body.
According to the conservation of energy, the total energy at A (sum of the potential energy and kinetic energy of the body) must equal the total energy at B.
At A, potential energy of the body is zero since it is far away from the Sun.
At A, kinetic energy of the body at A is $\dfrac{1}{2}m{v_0}^2$.
At B, gravitational potential energy exists and is given by, $\dfrac{{ - GMm}}{{{r_{\min }}}}$ where $G$is the gravitational constant, $M$ is the mass of the Sun, $m$ is the mass of the body and ${r_{\min }}$ is the distance between the Sun and the body.
At B, the kinetic energy is given as $\dfrac{1}{2}m{v^2}$.
By conservation of energy, $\dfrac{1}{2}m{v_0}^2 = \dfrac{1}{2}m{v^2} - \dfrac{{GMm}}{{{r_{\min }}}}$.
On simplifying we get, $\dfrac{{{v^2}}}{2} - \dfrac{{{v_0}^2}}{2} = \dfrac{{GM}}{{{r_{\min }}}}$.
Substitute for $v = \dfrac{{{v_0}l}}{{{r_{\min }}}}$ in the above equation and then rearranging, $\dfrac{{{v_0}^2}}{2} = \dfrac{{{v_0}^2{l^2}}}{{2{r_{\min }}^2}} - \dfrac{{GM}}{{{r_{\min }}}}$.
Multiply throughout by $2{r_{\min }}^2$ to get a quadratic equation in ${r_{\min }}$.
i.e., ${v_0}^2{r_{\min }}^2 = {v_0}^2{l^2} - 2GM{r_{\min }}$ or ${v_0}^2{r_{\min }}^2 + 2GM{r_{\min }} - {v_0}^2{l^2} = 0$.
Step 4: The above equation is a quadratic equation in ${r_{\min }}$. Roots of the equation can be obtained using the quadratic formula.
We have, ${v_0}^2{r_{\min }}^2 + 2GM{r_{\min }} - {v_0}^2{l^2} = 0$ is same as $a{x^2} + bx + c = 0$.
Here, $x = {r_{\min }}{\text{, }}a = {v_0}^2{\text{, }}b = 2GM{\text{ and }}c = - {v_0}^2{l^2}$.
Applying the quadratic formula, ${r_{\min }} = \dfrac{{ - 2GM \pm \sqrt {4{G^2}{M^2} + 4{v_0}^4{l^2}} }}{{2{v_0}^2}}$.
Simplifying we get, ${r_{\min }} = \dfrac{{ - 2GM}}{{2{v_0}^2}} \pm \dfrac{1}{{2{v_0}^2}}\sqrt {4{G^2}{M^2}\left( {1 + \dfrac{{{v_0}^2{l^2}}}{{{G^2}{M^2}}}} \right)} $.
Cancel the common terms in numerator and denominator to get, ${r_{\min }} = \dfrac{{ - GM}}{{{v_0}^2}} \pm \dfrac{{GM}}{{{v_0}^2}}\sqrt {\left( {1 + \dfrac{{{v_0}^2{l^2}}}{{{G^2}{M^2}}}} \right)} $.
Taking $\dfrac{{GM}}{{{v_0}^2}}$ from the terms, we have
${r_{\min }} = \dfrac{{GM}}{{{v_0}^2}}\left[ { - 1 \pm \left( {\sqrt {\left( {1 + \dfrac{{{v_0}^2{l^2}}}{{{G^2}{M^2}}}} \right)} } \right)} \right]$.
We only take the positive root of ${r_{\min }}$.
i.e., we have ${r_{\min }} = \dfrac{{GM}}{{{v_0}^2}}\left[ {\sqrt {\left( {1 + \dfrac{{{v_0}^2{l^2}}}{{{G^2}{M^2}}}} \right)} - 1} \right]$.
Note: The motion of the cosmic body is angular or rotational as shown in the figure. Thus, angular momentum is the term of interest as the relation for angular momentum involves the distance $r$ from the rotational axis. Here this distance is the distance between the Sun and the cosmic body. Once the roots of ${r_{\min }}$ (positive and negative) are obtained, we consider the positive root of ${r_{\min }}$ as it is a measure of distance and distance must not be a negative value.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

