Answer
Verified
87.3k+ views
Hint: To solve this question we have to apply a parallel axis theorem. According to this theorem, the moment of inertia along an axis parallel to the original axis will be the sum of the moment of inertia along the perpendicular axis and the product of mass and the distance between the perpendicular axis and parallel axis.
Formulae used:
${I_{parallel}} = {I_{perpendicular}} + M{R^2}$
Here ${I_{parallel}}$ is the moment of inertia along the parallel axis, ${I_{perpendicular}}$ is the moment of inertia along the axis through the centre of mass, $M$ is the mass of the object and $R$ is the distance between the centre of mass and the parallel axis.
Complete step by step answer:
In the question, a uniform square plate of side $a$ and mass $m$ is given. Let’s draw a figure.
From the above figure, we can easily find $R$ using the Pythagoras theorem,
$ \Rightarrow R = \sqrt {{a^2} - {{\left( {\dfrac{a}{2}} \right)}^2}} = \dfrac{a}{{\sqrt 2 }}$
We know that for a square plate, the moment of inertia along a perpendicular axis passing through the centre of mass is,
$ \Rightarrow {I_{perpendicular}} = \dfrac{{m{a^2}}}{6}$
So, using the parallel axis theorem, we get
$ \Rightarrow {I_{parallel}} = {I_{perpendicular}} + M{R^2}$
Here ${I_{parallel}}$ is the moment of inertia along the parallel axis, ${I_{perpendicular}}$ is the moment of inertia along the axis through the centre of mass, $M$ is the mass of the object and $R$ is the distance between the centre of mass and the parallel axis.
Substituting the value of $R$ and ${I_{perpendicular}}$ we get
$ \Rightarrow {I_{parallel}} = {I_{perpendicular}} + M{R^2}$
$ \therefore {I_{parallel}} = \dfrac{{m{a^2}}}{6} + \dfrac{{m{a^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}} = \dfrac{2}{3}m{a^2}$
So the required answer is $\dfrac{2}{3}m{a^2}$. Hence option (D) is correct.
Note: While solving questions related to moment of inertia, make sure to apply the correct formulae. There are two different theorems i.e. parallel axis theorem and perpendicular axis theorem. Always use the correct theorem. The parallel axis theorem is used for axes parallel to the centroidal axis of the body. However, the perpendicular axis theorem is used for axes that are perpendicular to the centroidal axis of the body.
Formulae used:
${I_{parallel}} = {I_{perpendicular}} + M{R^2}$
Here ${I_{parallel}}$ is the moment of inertia along the parallel axis, ${I_{perpendicular}}$ is the moment of inertia along the axis through the centre of mass, $M$ is the mass of the object and $R$ is the distance between the centre of mass and the parallel axis.
Complete step by step answer:
In the question, a uniform square plate of side $a$ and mass $m$ is given. Let’s draw a figure.
From the above figure, we can easily find $R$ using the Pythagoras theorem,
$ \Rightarrow R = \sqrt {{a^2} - {{\left( {\dfrac{a}{2}} \right)}^2}} = \dfrac{a}{{\sqrt 2 }}$
We know that for a square plate, the moment of inertia along a perpendicular axis passing through the centre of mass is,
$ \Rightarrow {I_{perpendicular}} = \dfrac{{m{a^2}}}{6}$
So, using the parallel axis theorem, we get
$ \Rightarrow {I_{parallel}} = {I_{perpendicular}} + M{R^2}$
Here ${I_{parallel}}$ is the moment of inertia along the parallel axis, ${I_{perpendicular}}$ is the moment of inertia along the axis through the centre of mass, $M$ is the mass of the object and $R$ is the distance between the centre of mass and the parallel axis.
Substituting the value of $R$ and ${I_{perpendicular}}$ we get
$ \Rightarrow {I_{parallel}} = {I_{perpendicular}} + M{R^2}$
$ \therefore {I_{parallel}} = \dfrac{{m{a^2}}}{6} + \dfrac{{m{a^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}} = \dfrac{2}{3}m{a^2}$
So the required answer is $\dfrac{2}{3}m{a^2}$. Hence option (D) is correct.
Note: While solving questions related to moment of inertia, make sure to apply the correct formulae. There are two different theorems i.e. parallel axis theorem and perpendicular axis theorem. Always use the correct theorem. The parallel axis theorem is used for axes parallel to the centroidal axis of the body. However, the perpendicular axis theorem is used for axes that are perpendicular to the centroidal axis of the body.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A pilot in a plane wants to go 500km towards the north class 11 physics JEE_Main
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
A circular hole of radius dfracR4 is made in a thin class 11 physics JEE_Main
The potential energy of a certain spring when stretched class 11 physics JEE_Main
The ratio of speed of sound in Hydrogen to that in class 11 physics JEE_MAIN
A roller of mass 300kg and of radius 50cm lying on class 12 physics JEE_Main