Consider a uniform square plate of side $a$ and mass $m$. The moment of inertia of this plate about an axis perpendicular to its plane and passing through one of its corner is:
A) $\dfrac{5}{6}m{a^2}$
B) $\dfrac{1}{{12}}m{a^2}$
C) $\dfrac{7}{{12}}m{a^2}$
D) $\dfrac{2}{3}m{a^2}$
Answer
Verified
119.4k+ views
Hint: To solve this question we have to apply a parallel axis theorem. According to this theorem, the moment of inertia along an axis parallel to the original axis will be the sum of the moment of inertia along the perpendicular axis and the product of mass and the distance between the perpendicular axis and parallel axis.
Formulae used:
${I_{parallel}} = {I_{perpendicular}} + M{R^2}$
Here ${I_{parallel}}$ is the moment of inertia along the parallel axis, ${I_{perpendicular}}$ is the moment of inertia along the axis through the centre of mass, $M$ is the mass of the object and $R$ is the distance between the centre of mass and the parallel axis.
Complete step by step answer:
In the question, a uniform square plate of side $a$ and mass $m$ is given. Let’s draw a figure.
From the above figure, we can easily find $R$ using the Pythagoras theorem,
$ \Rightarrow R = \sqrt {{a^2} - {{\left( {\dfrac{a}{2}} \right)}^2}} = \dfrac{a}{{\sqrt 2 }}$
We know that for a square plate, the moment of inertia along a perpendicular axis passing through the centre of mass is,
$ \Rightarrow {I_{perpendicular}} = \dfrac{{m{a^2}}}{6}$
So, using the parallel axis theorem, we get
$ \Rightarrow {I_{parallel}} = {I_{perpendicular}} + M{R^2}$
Here ${I_{parallel}}$ is the moment of inertia along the parallel axis, ${I_{perpendicular}}$ is the moment of inertia along the axis through the centre of mass, $M$ is the mass of the object and $R$ is the distance between the centre of mass and the parallel axis.
Substituting the value of $R$ and ${I_{perpendicular}}$ we get
$ \Rightarrow {I_{parallel}} = {I_{perpendicular}} + M{R^2}$
$ \therefore {I_{parallel}} = \dfrac{{m{a^2}}}{6} + \dfrac{{m{a^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}} = \dfrac{2}{3}m{a^2}$
So the required answer is $\dfrac{2}{3}m{a^2}$. Hence option (D) is correct.
Note: While solving questions related to moment of inertia, make sure to apply the correct formulae. There are two different theorems i.e. parallel axis theorem and perpendicular axis theorem. Always use the correct theorem. The parallel axis theorem is used for axes parallel to the centroidal axis of the body. However, the perpendicular axis theorem is used for axes that are perpendicular to the centroidal axis of the body.
Formulae used:
${I_{parallel}} = {I_{perpendicular}} + M{R^2}$
Here ${I_{parallel}}$ is the moment of inertia along the parallel axis, ${I_{perpendicular}}$ is the moment of inertia along the axis through the centre of mass, $M$ is the mass of the object and $R$ is the distance between the centre of mass and the parallel axis.
Complete step by step answer:
In the question, a uniform square plate of side $a$ and mass $m$ is given. Let’s draw a figure.
From the above figure, we can easily find $R$ using the Pythagoras theorem,
$ \Rightarrow R = \sqrt {{a^2} - {{\left( {\dfrac{a}{2}} \right)}^2}} = \dfrac{a}{{\sqrt 2 }}$
We know that for a square plate, the moment of inertia along a perpendicular axis passing through the centre of mass is,
$ \Rightarrow {I_{perpendicular}} = \dfrac{{m{a^2}}}{6}$
So, using the parallel axis theorem, we get
$ \Rightarrow {I_{parallel}} = {I_{perpendicular}} + M{R^2}$
Here ${I_{parallel}}$ is the moment of inertia along the parallel axis, ${I_{perpendicular}}$ is the moment of inertia along the axis through the centre of mass, $M$ is the mass of the object and $R$ is the distance between the centre of mass and the parallel axis.
Substituting the value of $R$ and ${I_{perpendicular}}$ we get
$ \Rightarrow {I_{parallel}} = {I_{perpendicular}} + M{R^2}$
$ \therefore {I_{parallel}} = \dfrac{{m{a^2}}}{6} + \dfrac{{m{a^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}} = \dfrac{2}{3}m{a^2}$
So the required answer is $\dfrac{2}{3}m{a^2}$. Hence option (D) is correct.
Note: While solving questions related to moment of inertia, make sure to apply the correct formulae. There are two different theorems i.e. parallel axis theorem and perpendicular axis theorem. Always use the correct theorem. The parallel axis theorem is used for axes parallel to the centroidal axis of the body. However, the perpendicular axis theorem is used for axes that are perpendicular to the centroidal axis of the body.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs