
Consider a uniform electric field ${\text{E = 3}} \times {\text{1}}{{\text{0}}^3}{{\hat i N}}{{\text{C}}^{ - 1}}$. What is the net flux of the uniform electric field through a cube of side 20 cm oriented so that its faces are parallel to the coordinate planes?
Answer
232.8k+ views
Hint: The region around a charged particle where other charged particles experience a force is known as the electric field. We can find the magnitude of electric field intensity from the electric field intensity vector(E) and then by substituting the value in the formula, the net flux will be obtained.
Formula Used:
Area of the square (A) = ${({\text{Side}})^2}$
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
Complete step by step solution:
Electric field intensity (E) = ${\text{3}} \times {\text{1}}{{\text{0}}^3}{{\hat iN}}{{\text{C}}^{ - 1}}$
Magnitude of electric field intensity \[ = \left| {\overrightarrow {\text{E}} } \right| = \left| {{\text{3}} \times {\text{1}}{{\text{0}}^3}\hat i} \right| = \sqrt {{{({\text{3}} \times {\text{1}}{{\text{0}}^3})}^2}} = {\text{3}} \times {\text{1}}{{\text{0}}^3}{\text{ N/C}}\]
Side of the cube (s) = $20{\text{cm = 0}}{\text{.2m}}$ [$1{\text{m = 100cm}}$]
The electric field lines are passing in the x-direction, so the lines will pass through one of the sides of the cube and leaves through the opposite side of the cube. To obtain net flux we should calculate the flux through these sides of the cube which are squares.
We can calculate the area of the square by using the formula
Area of the square (A) = ${({\text{Side}})^2}$
$ \Rightarrow {\text{A}} = {\text{ (0}}{\text{.2}}{{\text{)}}^2} = {\text{ 0}}{\text{.04}}{{\text{m}}^2}$
Net flux can be calculated by using the formula
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
As the sides of the cube are parallel to the coordinate axis, the angle between the electric field lines and normal to the surface will be $0^\circ $
Now, by substituting the values of electric field intensity, area of the square and $\theta $ in the above formula, we get
$ \Rightarrow \Phi = 3 \times {10^3} \times 0.04 \times {\text{cos(0)}}^\circ $
$ \Rightarrow \Phi = 0.12 \times {10^3} \times 1$
On further calculation, we get
$ \Rightarrow \Phi = 120{\text{N}}{{\text{m}}^2}{\text{/C}}$
Therefore, The net flux through the cube is $120{\text{N}}{{\text{m}}^2}{\text{/C}}.$
Note: While doing the calculation, all the quantities should be in the same unit. The given value of the side of the cube is in centimetres, so convert it into meters before calculating the area of the square.
Formula Used:
Area of the square (A) = ${({\text{Side}})^2}$
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
Complete step by step solution:
Electric field intensity (E) = ${\text{3}} \times {\text{1}}{{\text{0}}^3}{{\hat iN}}{{\text{C}}^{ - 1}}$
Magnitude of electric field intensity \[ = \left| {\overrightarrow {\text{E}} } \right| = \left| {{\text{3}} \times {\text{1}}{{\text{0}}^3}\hat i} \right| = \sqrt {{{({\text{3}} \times {\text{1}}{{\text{0}}^3})}^2}} = {\text{3}} \times {\text{1}}{{\text{0}}^3}{\text{ N/C}}\]
Side of the cube (s) = $20{\text{cm = 0}}{\text{.2m}}$ [$1{\text{m = 100cm}}$]
The electric field lines are passing in the x-direction, so the lines will pass through one of the sides of the cube and leaves through the opposite side of the cube. To obtain net flux we should calculate the flux through these sides of the cube which are squares.
We can calculate the area of the square by using the formula
Area of the square (A) = ${({\text{Side}})^2}$
$ \Rightarrow {\text{A}} = {\text{ (0}}{\text{.2}}{{\text{)}}^2} = {\text{ 0}}{\text{.04}}{{\text{m}}^2}$
Net flux can be calculated by using the formula
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
As the sides of the cube are parallel to the coordinate axis, the angle between the electric field lines and normal to the surface will be $0^\circ $
Now, by substituting the values of electric field intensity, area of the square and $\theta $ in the above formula, we get
$ \Rightarrow \Phi = 3 \times {10^3} \times 0.04 \times {\text{cos(0)}}^\circ $
$ \Rightarrow \Phi = 0.12 \times {10^3} \times 1$
On further calculation, we get
$ \Rightarrow \Phi = 120{\text{N}}{{\text{m}}^2}{\text{/C}}$
Therefore, The net flux through the cube is $120{\text{N}}{{\text{m}}^2}{\text{/C}}.$
Note: While doing the calculation, all the quantities should be in the same unit. The given value of the side of the cube is in centimetres, so convert it into meters before calculating the area of the square.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

