
Consider a uniform electric field ${\text{E = 3}} \times {\text{1}}{{\text{0}}^3}{{\hat i N}}{{\text{C}}^{ - 1}}$. What is the net flux of the uniform electric field through a cube of side 20 cm oriented so that its faces are parallel to the coordinate planes?
Answer
206.4k+ views
Hint: The region around a charged particle where other charged particles experience a force is known as the electric field. We can find the magnitude of electric field intensity from the electric field intensity vector(E) and then by substituting the value in the formula, the net flux will be obtained.
Formula Used:
Area of the square (A) = ${({\text{Side}})^2}$
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
Complete step by step solution:
Electric field intensity (E) = ${\text{3}} \times {\text{1}}{{\text{0}}^3}{{\hat iN}}{{\text{C}}^{ - 1}}$
Magnitude of electric field intensity \[ = \left| {\overrightarrow {\text{E}} } \right| = \left| {{\text{3}} \times {\text{1}}{{\text{0}}^3}\hat i} \right| = \sqrt {{{({\text{3}} \times {\text{1}}{{\text{0}}^3})}^2}} = {\text{3}} \times {\text{1}}{{\text{0}}^3}{\text{ N/C}}\]
Side of the cube (s) = $20{\text{cm = 0}}{\text{.2m}}$ [$1{\text{m = 100cm}}$]
The electric field lines are passing in the x-direction, so the lines will pass through one of the sides of the cube and leaves through the opposite side of the cube. To obtain net flux we should calculate the flux through these sides of the cube which are squares.
We can calculate the area of the square by using the formula
Area of the square (A) = ${({\text{Side}})^2}$
$ \Rightarrow {\text{A}} = {\text{ (0}}{\text{.2}}{{\text{)}}^2} = {\text{ 0}}{\text{.04}}{{\text{m}}^2}$
Net flux can be calculated by using the formula
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
As the sides of the cube are parallel to the coordinate axis, the angle between the electric field lines and normal to the surface will be $0^\circ $
Now, by substituting the values of electric field intensity, area of the square and $\theta $ in the above formula, we get
$ \Rightarrow \Phi = 3 \times {10^3} \times 0.04 \times {\text{cos(0)}}^\circ $
$ \Rightarrow \Phi = 0.12 \times {10^3} \times 1$
On further calculation, we get
$ \Rightarrow \Phi = 120{\text{N}}{{\text{m}}^2}{\text{/C}}$
Therefore, The net flux through the cube is $120{\text{N}}{{\text{m}}^2}{\text{/C}}.$
Note: While doing the calculation, all the quantities should be in the same unit. The given value of the side of the cube is in centimetres, so convert it into meters before calculating the area of the square.
Formula Used:
Area of the square (A) = ${({\text{Side}})^2}$
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
Complete step by step solution:
Electric field intensity (E) = ${\text{3}} \times {\text{1}}{{\text{0}}^3}{{\hat iN}}{{\text{C}}^{ - 1}}$
Magnitude of electric field intensity \[ = \left| {\overrightarrow {\text{E}} } \right| = \left| {{\text{3}} \times {\text{1}}{{\text{0}}^3}\hat i} \right| = \sqrt {{{({\text{3}} \times {\text{1}}{{\text{0}}^3})}^2}} = {\text{3}} \times {\text{1}}{{\text{0}}^3}{\text{ N/C}}\]
Side of the cube (s) = $20{\text{cm = 0}}{\text{.2m}}$ [$1{\text{m = 100cm}}$]
The electric field lines are passing in the x-direction, so the lines will pass through one of the sides of the cube and leaves through the opposite side of the cube. To obtain net flux we should calculate the flux through these sides of the cube which are squares.
We can calculate the area of the square by using the formula
Area of the square (A) = ${({\text{Side}})^2}$
$ \Rightarrow {\text{A}} = {\text{ (0}}{\text{.2}}{{\text{)}}^2} = {\text{ 0}}{\text{.04}}{{\text{m}}^2}$
Net flux can be calculated by using the formula
Flux $(\Phi ) = \left| {\overrightarrow {\text{E}} } \right| \times {\text{A}} \times \cos \theta $
As the sides of the cube are parallel to the coordinate axis, the angle between the electric field lines and normal to the surface will be $0^\circ $
Now, by substituting the values of electric field intensity, area of the square and $\theta $ in the above formula, we get
$ \Rightarrow \Phi = 3 \times {10^3} \times 0.04 \times {\text{cos(0)}}^\circ $
$ \Rightarrow \Phi = 0.12 \times {10^3} \times 1$
On further calculation, we get
$ \Rightarrow \Phi = 120{\text{N}}{{\text{m}}^2}{\text{/C}}$
Therefore, The net flux through the cube is $120{\text{N}}{{\text{m}}^2}{\text{/C}}.$
Note: While doing the calculation, all the quantities should be in the same unit. The given value of the side of the cube is in centimetres, so convert it into meters before calculating the area of the square.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Geostationary and Geosynchronous Satellites Explained

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter - 2025-26

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Guru Nanak Jayanti 2025: Date, History & Celebration of Gurpurab

