
Consider a collection of a large number of particles each with speed $v$ . The direction of velocity is randomly distributed in a collection. Show that the magnitude of the relative velocity between a pair of particles averaged over all the pairs in the collection is greater than $v$.
Answer
171k+ views
Hint: Consider the two particles of the same velocity. Calculate the relative velocity between the particles, by substituting the velocity as the same. Integrate itself with respect to the direction of the movement of the particles to find the relative velocity. Compare the relative velocity with respect to that of the velocity of the individual particles.
Formula used:
The trigonometric formula is given by
$\cos \left( {180 - \theta } \right) = {\sin ^2}\dfrac{\theta }{2}$
Where the $\theta $ is the angle between the particles.
Complete step by step solution:
It is given that the system is with many particles that moves in any direction with the velocity $v$ . So let us consider that the $P\,$ and $Q$ are the two particles in the system that possess the relative velocity of ${\vec v_p}$ and ${\vec v_q}$ respectively. Since the velocity of the particles in the system are same,
${\vec v_p} = {\vec v_q} = v$ ……………………..(1)
The relative velocity between the two particles is calculated as follows.
${\vec v_{qp}} = {\vec v_q} + {\vec v_p}$
To remove the vector sign on both sides, the modulus of the equations are taken.
$\left| {{{\vec v}_{qp}}} \right| = \left| {{{\vec v}_q} + {{\vec v}_p}} \right|$
$
{v_{qp}} = \sqrt {{{\left( {{v_q} + {v_p}} \right)}^2}} \\
\Rightarrow {v_{qp}} = v_p^2 + v_q^2 + 2{v_p}{v_q}\cos \left( {180 - A} \right) \\
$
Substituting the equation (1) in the above step, we get
$\Rightarrow {v_{qp}} = {v^2} + {v^2} + 2{v^2}{\sin ^2}\dfrac{A}{2}$
By further simplification, we get
$\Rightarrow {v_{qp}} = 2u\sin \dfrac{A}{2}$ ……………………..(2)
Since the velocity of the particle in the system is distributed randomly, the direction of it may vary from $0$ to $2\pi $.
Integrating the equation (2),
$
\Rightarrow {v_{qp}} = \int\limits_0^{2\pi } {2v\sin \dfrac{A}{2}} \\
\Rightarrow \dfrac{{ - 4v\left( {\cos \pi - \cos 0} \right)}}{{2\pi }} \\
$
By further simplification, we get
$\Rightarrow {v_{qp}} = \dfrac{{4v}}{\pi } = 1.27v$
$\Rightarrow 1.27v > v$
Hence the relative velocity between the particles in the system is greater than $v$.
Note: Totally the angles vary from ${0^ \circ }$ to ${360^ \circ }$ , that means $2\pi $ . Since the above question provides the details that the particle moves randomly in any direction, its angle of the movement varies from the ${0^ \circ }$ to $2\pi $ . The term relative velocity is used if both the particles under consideration move and possess the different velocity.
Formula used:
The trigonometric formula is given by
$\cos \left( {180 - \theta } \right) = {\sin ^2}\dfrac{\theta }{2}$
Where the $\theta $ is the angle between the particles.
Complete step by step solution:
It is given that the system is with many particles that moves in any direction with the velocity $v$ . So let us consider that the $P\,$ and $Q$ are the two particles in the system that possess the relative velocity of ${\vec v_p}$ and ${\vec v_q}$ respectively. Since the velocity of the particles in the system are same,
${\vec v_p} = {\vec v_q} = v$ ……………………..(1)
The relative velocity between the two particles is calculated as follows.
${\vec v_{qp}} = {\vec v_q} + {\vec v_p}$
To remove the vector sign on both sides, the modulus of the equations are taken.
$\left| {{{\vec v}_{qp}}} \right| = \left| {{{\vec v}_q} + {{\vec v}_p}} \right|$
$
{v_{qp}} = \sqrt {{{\left( {{v_q} + {v_p}} \right)}^2}} \\
\Rightarrow {v_{qp}} = v_p^2 + v_q^2 + 2{v_p}{v_q}\cos \left( {180 - A} \right) \\
$
Substituting the equation (1) in the above step, we get
$\Rightarrow {v_{qp}} = {v^2} + {v^2} + 2{v^2}{\sin ^2}\dfrac{A}{2}$
By further simplification, we get
$\Rightarrow {v_{qp}} = 2u\sin \dfrac{A}{2}$ ……………………..(2)
Since the velocity of the particle in the system is distributed randomly, the direction of it may vary from $0$ to $2\pi $.
Integrating the equation (2),
$
\Rightarrow {v_{qp}} = \int\limits_0^{2\pi } {2v\sin \dfrac{A}{2}} \\
\Rightarrow \dfrac{{ - 4v\left( {\cos \pi - \cos 0} \right)}}{{2\pi }} \\
$
By further simplification, we get
$\Rightarrow {v_{qp}} = \dfrac{{4v}}{\pi } = 1.27v$
$\Rightarrow 1.27v > v$
Hence the relative velocity between the particles in the system is greater than $v$.
Note: Totally the angles vary from ${0^ \circ }$ to ${360^ \circ }$ , that means $2\pi $ . Since the above question provides the details that the particle moves randomly in any direction, its angle of the movement varies from the ${0^ \circ }$ to $2\pi $ . The term relative velocity is used if both the particles under consideration move and possess the different velocity.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solution for Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solution for Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solution for Class 11 Physics Chapter 3 Motion In A Plane - 2025-26
