
Consider a block sliding down a frictionless inclined plane with acceleration $a$. If we double the mass of the block, what is its acceleration?
(A) $\dfrac{a}{4}$
(B) $\dfrac{a}{2}$
(C) $a$
(D) $2a$
(E) $4a$
Answer
217.2k+ views
Hint: The equation which shows the relation between the mass and acceleration is weight or force equation, the weight or force is the product of the mass and acceleration. By using this relation, what happens to the acceleration when the mass is doubled can be determined.
Useful formula
The equation of force is given by,
$F = ma$
Where, $F$ is the force of the object, $m$ is the mass of the object and $a$ is the acceleration of the object.
Complete step by step solution
If the block is in a horizontal plane, the acceleration of the block acts vertically downwards due to gravitational force, then the acceleration of the block due to gravitation is called acceleration due to gravity. But here the block is sliding in the inclined plane, so the acceleration of the block is given by the product of the acceleration due to gravity and the sine component of the angle of inclination. So, the force or weight is written as,
$F = mg\sin \theta \,................\left( 1 \right)$
Where,
$F$ is the force of the object, $m$ is the mass of the object, $g$ is the acceleration due to gravity and $\theta $ is the angle of inclination.
Now,
The equation of force is given by,
$F = ma\,.................\left( 2 \right)$
By comparing the equation (1) and equation (2), then the acceleration is written as,
$a = g\sin \theta \,................\left( 3 \right)$
By equation (3), it is clear that the acceleration of the block in the inclined plane depends only on the acceleration due to gravity and the angle of inclination. It does not depend on the mass of the block. So, the acceleration remains constant when mass is changed.
Hence, the option (C) is the correct answer.
Note: By equation (3), the acceleration in the inclined plane does not depend on the mass of the block. When the mass of the block is doubled the acceleration will remain the same. When the mass of the block is increased or decreased there is no change in acceleration.
Useful formula
The equation of force is given by,
$F = ma$
Where, $F$ is the force of the object, $m$ is the mass of the object and $a$ is the acceleration of the object.
Complete step by step solution
If the block is in a horizontal plane, the acceleration of the block acts vertically downwards due to gravitational force, then the acceleration of the block due to gravitation is called acceleration due to gravity. But here the block is sliding in the inclined plane, so the acceleration of the block is given by the product of the acceleration due to gravity and the sine component of the angle of inclination. So, the force or weight is written as,
$F = mg\sin \theta \,................\left( 1 \right)$
Where,
$F$ is the force of the object, $m$ is the mass of the object, $g$ is the acceleration due to gravity and $\theta $ is the angle of inclination.
Now,
The equation of force is given by,
$F = ma\,.................\left( 2 \right)$
By comparing the equation (1) and equation (2), then the acceleration is written as,
$a = g\sin \theta \,................\left( 3 \right)$
By equation (3), it is clear that the acceleration of the block in the inclined plane depends only on the acceleration due to gravity and the angle of inclination. It does not depend on the mass of the block. So, the acceleration remains constant when mass is changed.
Hence, the option (C) is the correct answer.
Note: By equation (3), the acceleration in the inclined plane does not depend on the mass of the block. When the mass of the block is doubled the acceleration will remain the same. When the mass of the block is increased or decreased there is no change in acceleration.
Recently Updated Pages
Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

