
Calculate total moment of the two forces about O from the given figure:

A. $2{\text{ Nm (clockwise)}}$
B. $2{\text{ Nm (anti clockwise)}}$
C. ${\text{4 Nm (clockwise)}}$
D. ${\text{4 Nm (anti clockwise)}}$
Answer
218.7k+ views
Hint Moment of force is a measure of tendency of the force to cause rotation in a body about a specific point or axis. Its value is equal to that of torque and is given by $\tau = \vec r \times \vec F$ where $\vec F$ is the force in consideration and $\vec r$ is the position vector of force with respect to a fixed point about which moment is to be calculated.
The direction of the moment of force is given by the right hand thumb rule which states that if we roll our fingers from $\vec r$ towards the force $\vec F$ then the direction of thumb gives the direction of the moment of force.
Complete step by step answer
Let us first discuss the moment of a force.
Moment of force is a measure of tendency of the force to cause rotation in a body about a specific point or axis. Its value is equal to that of torque and is given by $\tau = \vec r \times \vec F$ where $\vec F$ is the force in consideration and $\vec r$ is the position vector of force with respect to a fixed point about which moment is to be calculated.
The direction of the moment of force can be found out by the basic rule of cross product or by the right hand thumb rule which states that if we roll our fingers from $\vec r$ towards the force $\vec F$ then the direction of thumb gives the direction of the moment of force.
Now, let us consider the force ${F_1}$ .
The position vector from point O has magnitude $r = 2m$ which is at right angle to the force.
Since, $\tau = \vec r \times \vec F = r \times F \times \sin 90^\circ = r \times F$
Therefore, for force ${F_1}$ , moment about O is given by
${\tau _1} = 2 \times 5 = 10{\text{ Nm (anti clockwise)}}$
Now, for force ${F_2}$ , the position vector about O has magnitude $r = 4m$ which is also perpendicular to the force. So, the moment about O is given by
${\tau _2} = 4 \times 3 = 12{\text{ Nm (clockwise)}}$
Let us consider the clockwise direction to be positive. Therefore, the net moment of the forces about the point O will be the vector sum of the two forces and given by
$\tau = 12 - 10 = 2{\text{ Nm (clockwise)}}$
Hence, option A is correct.
Note Although the unit of torque and moment is the same that is ‘Nm’ but there are certain differences between them. Torque is related to the movement but the moment is a static force. Torque can be used to measure the coupling whereas moment is not used for this purpose.
The direction of the moment of force is given by the right hand thumb rule which states that if we roll our fingers from $\vec r$ towards the force $\vec F$ then the direction of thumb gives the direction of the moment of force.
Complete step by step answer
Let us first discuss the moment of a force.
Moment of force is a measure of tendency of the force to cause rotation in a body about a specific point or axis. Its value is equal to that of torque and is given by $\tau = \vec r \times \vec F$ where $\vec F$ is the force in consideration and $\vec r$ is the position vector of force with respect to a fixed point about which moment is to be calculated.
The direction of the moment of force can be found out by the basic rule of cross product or by the right hand thumb rule which states that if we roll our fingers from $\vec r$ towards the force $\vec F$ then the direction of thumb gives the direction of the moment of force.
Now, let us consider the force ${F_1}$ .
The position vector from point O has magnitude $r = 2m$ which is at right angle to the force.
Since, $\tau = \vec r \times \vec F = r \times F \times \sin 90^\circ = r \times F$
Therefore, for force ${F_1}$ , moment about O is given by
${\tau _1} = 2 \times 5 = 10{\text{ Nm (anti clockwise)}}$
Now, for force ${F_2}$ , the position vector about O has magnitude $r = 4m$ which is also perpendicular to the force. So, the moment about O is given by
${\tau _2} = 4 \times 3 = 12{\text{ Nm (clockwise)}}$
Let us consider the clockwise direction to be positive. Therefore, the net moment of the forces about the point O will be the vector sum of the two forces and given by
$\tau = 12 - 10 = 2{\text{ Nm (clockwise)}}$
Hence, option A is correct.
Note Although the unit of torque and moment is the same that is ‘Nm’ but there are certain differences between them. Torque is related to the movement but the moment is a static force. Torque can be used to measure the coupling whereas moment is not used for this purpose.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

