
Calculate the resistivity of an n-type semiconductor from the following data: density of conduction electrons and holes are $8 \times {10^{13}}c{m^{ - 3}}$ and $5 \times {10^{12}}c{m^{ - 3}}$ respectively, mobility of conduction electrons and holes are $2.3 \times {10^4}c{m^2}{V^{ - 1}}{s^{ - 1}}$ and $100c{m^2}{V^{ - 1}}{s^{ - 1}}$ respectively.
Answer
233.1k+ views
Hint: We know that resistivity of a semiconductor is a multiplicative inverse of conductivity of the semiconductor. Conductivity of a semiconductor is the sum of products of density and mobility of charge particles present in a semiconductor. First find conductivity then find resistivity by dividing 1 by conductivity.
Complete step by step answer:
Given, the density of conduction electrons is ${n_e} = 8 \times {10^{13}}c{m^{ - 3}}$.
Density of holes is ${n_h} = 5 \times {10^{12}}c{m^{ - 3}}$.
Mobility of conduction electrons is ${\mu _e} = 2.3 \times {10^4}c{m^2}{V^{ - 1}}{s^{ - 1}}$.
Mobility of holes is ${\mu _h} = 100c{m^2}{V^{ - 1}}{s^{ - 1}}$.
We know that, conductivity of a semiconductor is given by
$\sigma = e\left( {{n_e}{\mu _e} + {n_h}{\mu _h}} \right)$, where $e$ is charge on electron $e = 1.6 \times {10^{ - 19}}C$.
$\sigma = 1.6 \times {10^{ - 19}}(8 \times {10^{13}} \times 2.3 \times {10^4} + 5 \times {10^{12}} \times 100)$
\[\sigma = .294\]
We know that resistivity is a multiplicative inverse of conductivity.
Then resistivity $\rho = \dfrac{1}{\sigma } = \dfrac{1}{{.294}} = 3.401\Omega /cm = 0.03401\Omega /m$.
Note: Conductivity of a semiconductor is caused due to holes and conduction electrons present in it. In n-type semiconductor conduction electrons are in majority and holes are in minority but in p-type semiconductor holes are in majority and conduction electrons are in minority. These holes and conduction electrons are produced by adding impurities in pure semiconductor.
Complete step by step answer:
Given, the density of conduction electrons is ${n_e} = 8 \times {10^{13}}c{m^{ - 3}}$.
Density of holes is ${n_h} = 5 \times {10^{12}}c{m^{ - 3}}$.
Mobility of conduction electrons is ${\mu _e} = 2.3 \times {10^4}c{m^2}{V^{ - 1}}{s^{ - 1}}$.
Mobility of holes is ${\mu _h} = 100c{m^2}{V^{ - 1}}{s^{ - 1}}$.
We know that, conductivity of a semiconductor is given by
$\sigma = e\left( {{n_e}{\mu _e} + {n_h}{\mu _h}} \right)$, where $e$ is charge on electron $e = 1.6 \times {10^{ - 19}}C$.
$\sigma = 1.6 \times {10^{ - 19}}(8 \times {10^{13}} \times 2.3 \times {10^4} + 5 \times {10^{12}} \times 100)$
\[\sigma = .294\]
We know that resistivity is a multiplicative inverse of conductivity.
Then resistivity $\rho = \dfrac{1}{\sigma } = \dfrac{1}{{.294}} = 3.401\Omega /cm = 0.03401\Omega /m$.
Note: Conductivity of a semiconductor is caused due to holes and conduction electrons present in it. In n-type semiconductor conduction electrons are in majority and holes are in minority but in p-type semiconductor holes are in majority and conduction electrons are in minority. These holes and conduction electrons are produced by adding impurities in pure semiconductor.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
MOSFET: Definition, Working Principle, Types & Applications

Understanding Collisions: Types and Examples for Students

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

One Day International Cricket- India Vs New Zealand Records and Score

Highest T20 Scores in Cricket: Top Records & Stats 2025

