
Calculate the resistivity of an n-type semiconductor from the following data: density of conduction electrons and holes are $8 \times {10^{13}}c{m^{ - 3}}$ and $5 \times {10^{12}}c{m^{ - 3}}$ respectively, mobility of conduction electrons and holes are $2.3 \times {10^4}c{m^2}{V^{ - 1}}{s^{ - 1}}$ and $100c{m^2}{V^{ - 1}}{s^{ - 1}}$ respectively.
Answer
232.8k+ views
Hint: We know that resistivity of a semiconductor is a multiplicative inverse of conductivity of the semiconductor. Conductivity of a semiconductor is the sum of products of density and mobility of charge particles present in a semiconductor. First find conductivity then find resistivity by dividing 1 by conductivity.
Complete step by step answer:
Given, the density of conduction electrons is ${n_e} = 8 \times {10^{13}}c{m^{ - 3}}$.
Density of holes is ${n_h} = 5 \times {10^{12}}c{m^{ - 3}}$.
Mobility of conduction electrons is ${\mu _e} = 2.3 \times {10^4}c{m^2}{V^{ - 1}}{s^{ - 1}}$.
Mobility of holes is ${\mu _h} = 100c{m^2}{V^{ - 1}}{s^{ - 1}}$.
We know that, conductivity of a semiconductor is given by
$\sigma = e\left( {{n_e}{\mu _e} + {n_h}{\mu _h}} \right)$, where $e$ is charge on electron $e = 1.6 \times {10^{ - 19}}C$.
$\sigma = 1.6 \times {10^{ - 19}}(8 \times {10^{13}} \times 2.3 \times {10^4} + 5 \times {10^{12}} \times 100)$
\[\sigma = .294\]
We know that resistivity is a multiplicative inverse of conductivity.
Then resistivity $\rho = \dfrac{1}{\sigma } = \dfrac{1}{{.294}} = 3.401\Omega /cm = 0.03401\Omega /m$.
Note: Conductivity of a semiconductor is caused due to holes and conduction electrons present in it. In n-type semiconductor conduction electrons are in majority and holes are in minority but in p-type semiconductor holes are in majority and conduction electrons are in minority. These holes and conduction electrons are produced by adding impurities in pure semiconductor.
Complete step by step answer:
Given, the density of conduction electrons is ${n_e} = 8 \times {10^{13}}c{m^{ - 3}}$.
Density of holes is ${n_h} = 5 \times {10^{12}}c{m^{ - 3}}$.
Mobility of conduction electrons is ${\mu _e} = 2.3 \times {10^4}c{m^2}{V^{ - 1}}{s^{ - 1}}$.
Mobility of holes is ${\mu _h} = 100c{m^2}{V^{ - 1}}{s^{ - 1}}$.
We know that, conductivity of a semiconductor is given by
$\sigma = e\left( {{n_e}{\mu _e} + {n_h}{\mu _h}} \right)$, where $e$ is charge on electron $e = 1.6 \times {10^{ - 19}}C$.
$\sigma = 1.6 \times {10^{ - 19}}(8 \times {10^{13}} \times 2.3 \times {10^4} + 5 \times {10^{12}} \times 100)$
\[\sigma = .294\]
We know that resistivity is a multiplicative inverse of conductivity.
Then resistivity $\rho = \dfrac{1}{\sigma } = \dfrac{1}{{.294}} = 3.401\Omega /cm = 0.03401\Omega /m$.
Note: Conductivity of a semiconductor is caused due to holes and conduction electrons present in it. In n-type semiconductor conduction electrons are in majority and holes are in minority but in p-type semiconductor holes are in majority and conduction electrons are in minority. These holes and conduction electrons are produced by adding impurities in pure semiconductor.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

