
Calculate the height of the potential barrier for a head on collision of two deuterons.
Answer
123.6k+ views
Hint: The height of potential barrier here means the electrostatic potential energy between the two deuterons so, use the equation of electrostatic potential energy between two charged particles i.e.
$U = \dfrac{1}{{4\pi { \in _ \circ }}}\dfrac{{{q_1}{q_2}}}{r}$
Where U= potential energy or barrier, ${q_1},{q_2}$ are the two charges and r= distance between the two charges
Complete step by step solution:
Step1: The potential energy for the collision of two charged particles can be given by-
$U = \dfrac{1}{{4\pi { \in _ \circ }}}\dfrac{{{q_1}{q_2}}}{r}$ ………………(1)
Where U= potential barrier, ${q_1},{q_2}$ are the two charges and r= distance between the two charges
Since the deuterons are the charged particles whose magnitude of charge is equal to that of an electron.
Therefore, ${q_1} = {q_2} = 1.6 \times {10^{ - 19}}C$
Also the distance between their centres on collision is given by-
r= radius of 1st deuteron radius of 2nd deuteron
radius of nucleus is given by-
$r = r_0 A^{1/3}$
Where ${r_ 0}$ = fermi constant = 1.6 fm, A= mass number
Since deuteron has a mass number of 2, therefore A=2
Hence radius of deuteron nucleus is given by,
$r$ = $1.6 \times 2^{1/3}$
So the radius of a deuteron nucleus = $2fm$ (Fermi meter)
Therefore \[r = 2 + 2 = 4fm\]
Since, $1fm = {10^{ - 15}}m$
\[ \Rightarrow r = 4 \times {10^{ - 15}}m\]
$\dfrac{1}{{4\pi { \in _ \circ }}} = 9 \times {10^9}N{m^2}{C^{ - 2}}$
Step2: Substituting all the values in equation (1) and simplify
$\Rightarrow$ $U = 9 \times {10^9}\dfrac{{{{\left( {1.6 \times {{10}^{ - 19}}} \right)}^2}}}{{4 \times {{10}^{ - 15}}}}J$.
This potential energy is in J. In order to convert it in eV divides it with charge of electron i.e. $1.6 \times {10^{ - 19}}C$.
Therefore,
$
\Rightarrow U = 9 \times {10^9}\dfrac{{{{\left( {1.6 \times {{10}^{ - 19}}} \right)}^2}}}{{4 \times {{10}^{ - 15}}\left( {1.6 \times {{10}^{ - 19}}} \right)}}eV \\
\Rightarrow U = 360 \times {10^3}eV \\
\Rightarrow U = 360keV \\ $
Hence the height of the potential barrier for a head on collision of two deuterons is 360keV.
Note: Always remember that there is a difference between the electrostatic potential and electrostatic potential energy. Electrostatic potential, at any point in an electric field, is defined as the amount of work done in moving a unit positive charge between infinity and that point, without any acceleration, against the electric force. Every point around a source charge is characterized with electric potential, which is given by-
$V = \dfrac{1}{{4\pi { \in _ \circ }}}\dfrac{q}{r}$
Where V= Electric potential
If instead of bringing a unit positive, we bring a charge 'q' from infinity to that point, work done W in doing so is given by-
\[W = q \times V = \dfrac{1}{{4\pi { \in _ \circ }}}\dfrac{{{q^2}}}{r}\]
This work is termed as 'electrostatic potential energy' of the charge q in the field of charge ‘q'. We can also say that the electric potential, at any point, in an electric field is the potential energy of a unit positive charge placed at that point.
$U = \dfrac{1}{{4\pi { \in _ \circ }}}\dfrac{{{q_1}{q_2}}}{r}$
Where U= potential energy or barrier, ${q_1},{q_2}$ are the two charges and r= distance between the two charges
Complete step by step solution:
Step1: The potential energy for the collision of two charged particles can be given by-
$U = \dfrac{1}{{4\pi { \in _ \circ }}}\dfrac{{{q_1}{q_2}}}{r}$ ………………(1)
Where U= potential barrier, ${q_1},{q_2}$ are the two charges and r= distance between the two charges
Since the deuterons are the charged particles whose magnitude of charge is equal to that of an electron.
Therefore, ${q_1} = {q_2} = 1.6 \times {10^{ - 19}}C$
Also the distance between their centres on collision is given by-
r= radius of 1st deuteron radius of 2nd deuteron
radius of nucleus is given by-
$r = r_0 A^{1/3}$
Where ${r_ 0}$ = fermi constant = 1.6 fm, A= mass number
Since deuteron has a mass number of 2, therefore A=2
Hence radius of deuteron nucleus is given by,
$r$ = $1.6 \times 2^{1/3}$
So the radius of a deuteron nucleus = $2fm$ (Fermi meter)
Therefore \[r = 2 + 2 = 4fm\]
Since, $1fm = {10^{ - 15}}m$
\[ \Rightarrow r = 4 \times {10^{ - 15}}m\]
$\dfrac{1}{{4\pi { \in _ \circ }}} = 9 \times {10^9}N{m^2}{C^{ - 2}}$
Step2: Substituting all the values in equation (1) and simplify
$\Rightarrow$ $U = 9 \times {10^9}\dfrac{{{{\left( {1.6 \times {{10}^{ - 19}}} \right)}^2}}}{{4 \times {{10}^{ - 15}}}}J$.
This potential energy is in J. In order to convert it in eV divides it with charge of electron i.e. $1.6 \times {10^{ - 19}}C$.
Therefore,
$
\Rightarrow U = 9 \times {10^9}\dfrac{{{{\left( {1.6 \times {{10}^{ - 19}}} \right)}^2}}}{{4 \times {{10}^{ - 15}}\left( {1.6 \times {{10}^{ - 19}}} \right)}}eV \\
\Rightarrow U = 360 \times {10^3}eV \\
\Rightarrow U = 360keV \\ $
Hence the height of the potential barrier for a head on collision of two deuterons is 360keV.
Note: Always remember that there is a difference between the electrostatic potential and electrostatic potential energy. Electrostatic potential, at any point in an electric field, is defined as the amount of work done in moving a unit positive charge between infinity and that point, without any acceleration, against the electric force. Every point around a source charge is characterized with electric potential, which is given by-
$V = \dfrac{1}{{4\pi { \in _ \circ }}}\dfrac{q}{r}$
Where V= Electric potential
If instead of bringing a unit positive, we bring a charge 'q' from infinity to that point, work done W in doing so is given by-
\[W = q \times V = \dfrac{1}{{4\pi { \in _ \circ }}}\dfrac{{{q^2}}}{r}\]
This work is termed as 'electrostatic potential energy' of the charge q in the field of charge ‘q'. We can also say that the electric potential, at any point, in an electric field is the potential energy of a unit positive charge placed at that point.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Physics Average Value and RMS Value JEE Main 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics
