
Calculate the following integral: $\int{\dfrac{dx}{x({{x}^{5}}+3)}}$
Answer
232.8k+ views
Hint: We will start with multiplying x inside the bracket in the denominator and then we will take \[{{x}^{6}}\]outside, after that, we can substitute $u=1+\dfrac{3}{{{x}^{5}}}$ and find $\dfrac{du}{dx}$, by this, we will expand the function into a simpler form and then we will apply the u-substitution method or the reverse chain rule to do the integration. Further, we will apply some logarithmic properties in order to simplify the solution.
Complete step-by-step solution:
We have with us the following integral: $\int{\dfrac{dx}{x({{x}^{5}}+3)}}$, We will now multiply the x in the denominator into the bracket.
And after multiplying, let’s rewrite the given integral as: $\int{\dfrac{dx}{({{x}^{6}}+3x)}}$
After this, we will expand the fraction by \[\dfrac{1}{{{x}^{6}}}\], this we will do by multiplying and dividing the denominator by ${{x}^{6}}$.
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{\dfrac{{{x}^{6}}}{{{x}^{6}}}\left( {{x}^{6}}+3x \right)}}=\int{\dfrac{dx}{{{x}^{6}}\left( \dfrac{{{x}^{6}}}{{{x}^{6}}}+\dfrac{3x}{{{x}^{6}}} \right)}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{6}}\left( 1+\dfrac{3}{{{x}^{5}}} \right)}}\text{ }.................................\text{Equation 1}\text{.} \\
& \\
\end{align}\]
Now, we will apply the u-substitution method or the reverse chain rule, in this rule we substitute the complex function with a single variable and then differentiate to obtain the derivate to avoid complexity and then again re-substitute the whole value.
So here, we will replace $1+\dfrac{3}{{{x}^{5}}}\to u$
Therefore, when $u=1+\dfrac{3}{{{x}^{5}}}$, differentiating both sides to obtain the value of du.
We will use the power rule here for differentiation, as we know the power rule is : $\left( \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right)$
So, we can apply it as shown below:
\[\begin{align}
& \Rightarrow u=(1+3{{x}^{-5}}) \\
& \Rightarrow du=\left( 0+\left( 3\times -5{{x}^{(-5-1)}} \right) \right)dx \\
& \Rightarrow du=-15{{x}^{-6}}dx \\
& \Rightarrow du=\dfrac{-15}{{{x}^{6}}}dx \\
& \Rightarrow dx=\dfrac{{{x}^{6}}}{-15}du \\
\end{align}\]
Now substituting the obtained values of $u=1+\dfrac{3}{{{x}^{5}}},dx=-\dfrac{{{x}^{6}}}{15}du$ in equation-1
We have equation 1 as \[\int{\dfrac{dx}{{{x}^{6}}\left( 1+\dfrac{3}{{{x}^{5}}} \right)}}\] ;
After replacement we get the following equation:
\[\int{\dfrac{-{{x}^{6}}du}{15{{x}^{6}}.u}}\] (Cancelling ${{x}^{6}}$ ) $\Rightarrow \int{\dfrac{-du}{15u}}$
We will take the constant out : $\int{a}\cdot f\left( x \right)dx=a\cdot \int{f}\left( x \right)dx$
$\int{\dfrac{-du}{15u}}=-\dfrac{1}{15}\int{\dfrac{du}{u}}.......................\text{ Equation 2}\text{.}$
Now we will solve: \[\int{\dfrac{1}{u}du}\] (This is a standard integral : $\int{\dfrac{1}{x}dx=\ln \left( x \right)}+C$ )
Therefore, we get the following:
$\int{\dfrac{1}{u}du=\ln \left( u \right)}+C$ Where C is a constant.
So $-\dfrac{1}{15}\int{\dfrac{du}{u}}=-\dfrac{1}{15}\ln \left( u \right)+C$
After re-substituting the value of u into the above equation, we will have:
$\dfrac{-1}{15}\ln \left( 1+\dfrac{3}{{{x}^{5}}} \right)+C$
On further simplifying we will get:
$\begin{align}
& \dfrac{-1}{15}\ln \left( 1+\dfrac{3}{{{x}^{5}}} \right)+C=\dfrac{\ln \left( 1+\dfrac{3}{{{x}^{5}}} \right)}{-15}+C\Rightarrow \dfrac{\ln \left( \dfrac{{{x}^{5}}+3}{{{x}^{5}}} \right)}{-15}+C \\
& \\
\end{align}$
Applying the logarithm property further: $\log \left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\log f\left( x \right)-\log g\left( x \right)$
$\dfrac{\ln \left( \dfrac{{{x}^{5}}+3}{{{x}^{5}}} \right)}{-15}+C=\dfrac{\ln \left( {{x}^{5}}+3 \right)-\ln \left( {{x}^{5}} \right)}{-15}+C$
{ Now we will apply: $\log f{{\left( x \right)}^{n}}=n\log f\left( x \right)$ }
\[\begin{align}
& -\dfrac{\ln \left( {{x}^{5}}+3 \right)-\ln \left( {{x}^{5}} \right)}{15}+C=\dfrac{5\ln \left( x \right)-\ln \left( {{x}^{5}}+3 \right)}{15}+C \\
& \Rightarrow \dfrac{\ln \left( x \right)}{3}-\dfrac{\ln \left( {{x}^{5}}+3 \right)}{15}+C \\
\end{align}\]
We will apply the absolute value function to logarithm functions in order to extend the integral’s domain:
Hence, \[\int{\dfrac{dx}{x({{x}^{5}}+3)}}=\dfrac{\ln \left( \left| x \right| \right)}{3}-\dfrac{\ln \left( \left| {{x}^{5}}+3 \right| \right)}{15}+C\]
Note: This integration can also be solved by the partial-fraction decomposition method. In Partial-fraction decomposition first, we start with the simplified answer and then taking it back apart, then we decompose the final expression into the initial polynomial fractions. For decomposition first, we write the function in the form of fractions where the denominators are factors of the given function and since the numerator is unknown we randomly assign them with any variable. Remember to use the absolute value of log functions because we want to cover the whole domain.
Complete step-by-step solution:
We have with us the following integral: $\int{\dfrac{dx}{x({{x}^{5}}+3)}}$, We will now multiply the x in the denominator into the bracket.
And after multiplying, let’s rewrite the given integral as: $\int{\dfrac{dx}{({{x}^{6}}+3x)}}$
After this, we will expand the fraction by \[\dfrac{1}{{{x}^{6}}}\], this we will do by multiplying and dividing the denominator by ${{x}^{6}}$.
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{\dfrac{{{x}^{6}}}{{{x}^{6}}}\left( {{x}^{6}}+3x \right)}}=\int{\dfrac{dx}{{{x}^{6}}\left( \dfrac{{{x}^{6}}}{{{x}^{6}}}+\dfrac{3x}{{{x}^{6}}} \right)}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{6}}\left( 1+\dfrac{3}{{{x}^{5}}} \right)}}\text{ }.................................\text{Equation 1}\text{.} \\
& \\
\end{align}\]
Now, we will apply the u-substitution method or the reverse chain rule, in this rule we substitute the complex function with a single variable and then differentiate to obtain the derivate to avoid complexity and then again re-substitute the whole value.
So here, we will replace $1+\dfrac{3}{{{x}^{5}}}\to u$
Therefore, when $u=1+\dfrac{3}{{{x}^{5}}}$, differentiating both sides to obtain the value of du.
We will use the power rule here for differentiation, as we know the power rule is : $\left( \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \right)$
So, we can apply it as shown below:
\[\begin{align}
& \Rightarrow u=(1+3{{x}^{-5}}) \\
& \Rightarrow du=\left( 0+\left( 3\times -5{{x}^{(-5-1)}} \right) \right)dx \\
& \Rightarrow du=-15{{x}^{-6}}dx \\
& \Rightarrow du=\dfrac{-15}{{{x}^{6}}}dx \\
& \Rightarrow dx=\dfrac{{{x}^{6}}}{-15}du \\
\end{align}\]
Now substituting the obtained values of $u=1+\dfrac{3}{{{x}^{5}}},dx=-\dfrac{{{x}^{6}}}{15}du$ in equation-1
We have equation 1 as \[\int{\dfrac{dx}{{{x}^{6}}\left( 1+\dfrac{3}{{{x}^{5}}} \right)}}\] ;
After replacement we get the following equation:
\[\int{\dfrac{-{{x}^{6}}du}{15{{x}^{6}}.u}}\] (Cancelling ${{x}^{6}}$ ) $\Rightarrow \int{\dfrac{-du}{15u}}$
We will take the constant out : $\int{a}\cdot f\left( x \right)dx=a\cdot \int{f}\left( x \right)dx$
$\int{\dfrac{-du}{15u}}=-\dfrac{1}{15}\int{\dfrac{du}{u}}.......................\text{ Equation 2}\text{.}$
Now we will solve: \[\int{\dfrac{1}{u}du}\] (This is a standard integral : $\int{\dfrac{1}{x}dx=\ln \left( x \right)}+C$ )
Therefore, we get the following:
$\int{\dfrac{1}{u}du=\ln \left( u \right)}+C$ Where C is a constant.
So $-\dfrac{1}{15}\int{\dfrac{du}{u}}=-\dfrac{1}{15}\ln \left( u \right)+C$
After re-substituting the value of u into the above equation, we will have:
$\dfrac{-1}{15}\ln \left( 1+\dfrac{3}{{{x}^{5}}} \right)+C$
On further simplifying we will get:
$\begin{align}
& \dfrac{-1}{15}\ln \left( 1+\dfrac{3}{{{x}^{5}}} \right)+C=\dfrac{\ln \left( 1+\dfrac{3}{{{x}^{5}}} \right)}{-15}+C\Rightarrow \dfrac{\ln \left( \dfrac{{{x}^{5}}+3}{{{x}^{5}}} \right)}{-15}+C \\
& \\
\end{align}$
Applying the logarithm property further: $\log \left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\log f\left( x \right)-\log g\left( x \right)$
$\dfrac{\ln \left( \dfrac{{{x}^{5}}+3}{{{x}^{5}}} \right)}{-15}+C=\dfrac{\ln \left( {{x}^{5}}+3 \right)-\ln \left( {{x}^{5}} \right)}{-15}+C$
{ Now we will apply: $\log f{{\left( x \right)}^{n}}=n\log f\left( x \right)$ }
\[\begin{align}
& -\dfrac{\ln \left( {{x}^{5}}+3 \right)-\ln \left( {{x}^{5}} \right)}{15}+C=\dfrac{5\ln \left( x \right)-\ln \left( {{x}^{5}}+3 \right)}{15}+C \\
& \Rightarrow \dfrac{\ln \left( x \right)}{3}-\dfrac{\ln \left( {{x}^{5}}+3 \right)}{15}+C \\
\end{align}\]
We will apply the absolute value function to logarithm functions in order to extend the integral’s domain:
Hence, \[\int{\dfrac{dx}{x({{x}^{5}}+3)}}=\dfrac{\ln \left( \left| x \right| \right)}{3}-\dfrac{\ln \left( \left| {{x}^{5}}+3 \right| \right)}{15}+C\]
Note: This integration can also be solved by the partial-fraction decomposition method. In Partial-fraction decomposition first, we start with the simplified answer and then taking it back apart, then we decompose the final expression into the initial polynomial fractions. For decomposition first, we write the function in the form of fractions where the denominators are factors of the given function and since the numerator is unknown we randomly assign them with any variable. Remember to use the absolute value of log functions because we want to cover the whole domain.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

