Answer
Verified
79.2k+ views
Hint: Equivalent resistance of two resistances connected in series combination is equal sum of individual resistances. Multiplicative inverse of equivalent resistance of two resistances connected in parallel combination is equal sum of multiplicative inverse of individual resistance. Here to find equivalent resistance between X and Y, we divide the complete circuit in parts and solve the parts and combine them again.
Complete step by step solution:
Given, ${R_A} = 1\Omega $, ${R_B} = 3\Omega $, ${R_C} = 4\Omega $, ${R_D} = 2\Omega $, ${R_E} = 4\Omega $, ${R_F} = 2\Omega $ and ${R_G} = 1\Omega $.
First, we take ${R_A}$ and ${R_B}$, these are connected in series then their equivalent resistance is ${R_{AB}} = {R_A} + {R_B} = 1 + 3 = 4\Omega $.
Now, resistance ${R_{AB}}$ and ${R_C}$ are connected in parallel and their equivalent resistance is ${R_{ABC}} = \dfrac{{{R_{AB}} \times {R_C}}}{{{R_{AB}} + {R_C}}} = \dfrac{{4 \times 4}}{{4 + 4}} = 2\Omega $.
Now, ${R_{ABC}}$ and \[{R_D}\] are connected in series and their equivalent resistance is ${R_{ABCD}} = {R_{ABC}} + {R_D} = 2 + 2 = 4\Omega $.
Now, resistance ${R_{ABCD}}$, ${R_E}$ and ${R_F}$ are connected in parallel combination and their equivalent resistance is \[{R_{ABCDEF}} = \dfrac{1}{{\dfrac{1}{{{R_{ABCD}}}} + \dfrac{1}{{{R_E}}} + \dfrac{1}{{{R_F}}}}} = \dfrac{1}{{\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{2}}} = 1\Omega \].
Finally, we have two resistance \[{R_{ABCDEF}}\] and \[{R_G}\] connected in series and their equivalent resistance is ${R_{Eq}} = {R_{ABCDEF}} + {R_G} = 1 + 1 = 2\Omega $.
Hence equivalent resistance between X and Y is $2\Omega $ and the correct answer is option B.
Note: For better understanding we can assume that after every step combination of resistances is replaced by their equivalent resistance. After all steps we find that there is only one resistance between X and Y and this resistance is equivalent resistance of all resistances.
Complete step by step solution:
Given, ${R_A} = 1\Omega $, ${R_B} = 3\Omega $, ${R_C} = 4\Omega $, ${R_D} = 2\Omega $, ${R_E} = 4\Omega $, ${R_F} = 2\Omega $ and ${R_G} = 1\Omega $.
First, we take ${R_A}$ and ${R_B}$, these are connected in series then their equivalent resistance is ${R_{AB}} = {R_A} + {R_B} = 1 + 3 = 4\Omega $.
Now, resistance ${R_{AB}}$ and ${R_C}$ are connected in parallel and their equivalent resistance is ${R_{ABC}} = \dfrac{{{R_{AB}} \times {R_C}}}{{{R_{AB}} + {R_C}}} = \dfrac{{4 \times 4}}{{4 + 4}} = 2\Omega $.
Now, ${R_{ABC}}$ and \[{R_D}\] are connected in series and their equivalent resistance is ${R_{ABCD}} = {R_{ABC}} + {R_D} = 2 + 2 = 4\Omega $.
Now, resistance ${R_{ABCD}}$, ${R_E}$ and ${R_F}$ are connected in parallel combination and their equivalent resistance is \[{R_{ABCDEF}} = \dfrac{1}{{\dfrac{1}{{{R_{ABCD}}}} + \dfrac{1}{{{R_E}}} + \dfrac{1}{{{R_F}}}}} = \dfrac{1}{{\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{2}}} = 1\Omega \].
Finally, we have two resistance \[{R_{ABCDEF}}\] and \[{R_G}\] connected in series and their equivalent resistance is ${R_{Eq}} = {R_{ABCDEF}} + {R_G} = 1 + 1 = 2\Omega $.
Hence equivalent resistance between X and Y is $2\Omega $ and the correct answer is option B.
Note: For better understanding we can assume that after every step combination of resistances is replaced by their equivalent resistance. After all steps we find that there is only one resistance between X and Y and this resistance is equivalent resistance of all resistances.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main