
Calculate the entropy change, involved in the conversion of one mole of liquid water at 373 K to vapour at the same temperature (Latent heat of vaporization =2.257 kJ/g).
A. \[{\rm{105}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
B. \[{\rm{107}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
C. \[{\rm{108}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
D. \[{\rm{109}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
Answer
161.4k+ views
Hint: Vaporisation is determined as the transformation of states of matter from the liquid state to the vapour state.
The latent heat vaporization (∆Hvap) or the enthalpy of vaporization is the enthalpy required to transform a liquid into a gas.
Formula Used:
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}}}{{{{\rm{T}}_{\rm{b}}}}}\]
where
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}\]=entropy change accompanying vapourization process
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation
\[{{\rm{T}}_{\rm{b}}}\]=boiling point
Complete Step by Step Solution:
In the given reaction, one mole of liquid water at 373 K is converted into vapour.
This reaction involves the transformation of liquid water into a vapour state.
This process is called vapourisation.
This reaction occurs as follows: -
\[{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right) \to {{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{g}} \right)\]
To find the entropy change for this reaction, the enthalpy of vaporization needs to be calculated first.
It is given that heat of vaporization or
\[{{\rm{q}}_{{\rm{vap}}}}\]=2.257 kJ/g = 2257 J/g
Mass of 1 mole of water=18g/mol
So, the enthalpy of vaporisation or
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]
=\[{{\rm{q}}_{{\rm{vap}}}}\]×(mass of 1 mole of water)
=2257 J/g(18 g/mol)
=40626 J/mol
So, \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\] is 40626 J/mol
We are given the boiling point,
\[{{\rm{T}}_{\rm{b}}}\]=373K.
So, we have \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation=40626 J/mol
\[{{\rm{T}}_{\rm{b}}}\]=boiling point=373K
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{40626Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}}}{{{\rm{373K}}}}\]
\[{\rm{ = 108}}{\rm{.91Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\]
So, option C is correct.
Note: While attending to the question, units of temperature, the heat of vaporisation, enthalpy of vaporisation, and entropy must be surely mentioned. Unit of entropy the conclusive statement must be mentioned. The heat of vaporisation is given in kJ/mol while the given options are in J/Kmol. So, the conversion of kJ/mol into J/mol is important.
The latent heat vaporization (∆Hvap) or the enthalpy of vaporization is the enthalpy required to transform a liquid into a gas.
Formula Used:
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}}}{{{{\rm{T}}_{\rm{b}}}}}\]
where
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}\]=entropy change accompanying vapourization process
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation
\[{{\rm{T}}_{\rm{b}}}\]=boiling point
Complete Step by Step Solution:
In the given reaction, one mole of liquid water at 373 K is converted into vapour.
This reaction involves the transformation of liquid water into a vapour state.
This process is called vapourisation.
This reaction occurs as follows: -
\[{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right) \to {{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{g}} \right)\]
To find the entropy change for this reaction, the enthalpy of vaporization needs to be calculated first.
It is given that heat of vaporization or
\[{{\rm{q}}_{{\rm{vap}}}}\]=2.257 kJ/g = 2257 J/g
Mass of 1 mole of water=18g/mol
So, the enthalpy of vaporisation or
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]
=\[{{\rm{q}}_{{\rm{vap}}}}\]×(mass of 1 mole of water)
=2257 J/g(18 g/mol)
=40626 J/mol
So, \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\] is 40626 J/mol
We are given the boiling point,
\[{{\rm{T}}_{\rm{b}}}\]=373K.
So, we have \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation=40626 J/mol
\[{{\rm{T}}_{\rm{b}}}\]=boiling point=373K
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{40626Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}}}{{{\rm{373K}}}}\]
\[{\rm{ = 108}}{\rm{.91Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\]
So, option C is correct.
Note: While attending to the question, units of temperature, the heat of vaporisation, enthalpy of vaporisation, and entropy must be surely mentioned. Unit of entropy the conclusive statement must be mentioned. The heat of vaporisation is given in kJ/mol while the given options are in J/Kmol. So, the conversion of kJ/mol into J/mol is important.
Recently Updated Pages
Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

The specific heat of metal is 067 Jg Its equivalent class 11 chemistry JEE_Main

The increasing order of a specific charge to mass ratio class 11 chemistry JEE_Main

Which one of the following is used for making shoe class 11 chemistry JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE
