
Calculate the decrease in kinetic energy of a moving body if its velocity reduces to half of the initial velocity.
Answer
147.6k+ views
Hint: To find the change in kinetic energy , we need to find the kinetic energy for given two situations separately. The kinetic energy of a moving object is related to its mass and velocity by the formula
${\text{K}}{\text{.E = }}\dfrac{1}{2}m{v^2}$
Complete step by step solution:
We know for kinetic energy, body must have velocity
Let initial velocity = v
$\eqalign{
& {\text{Also Kinetic energy is equal to}} \cr
& {\text{K}}{\text{.E}}{\text{. = }}\dfrac{1}{2}m{v^2} \cr
& {\text{given velocity decreased to half , so new velocity v'}} \cr
& {\text{v' = }}\dfrac{v}{2} \cr
& \Rightarrow {\text{K}}{\text{.}}{{\text{E}}_{new}} = {\text{ }}\dfrac{1}{2}m \times {\text{ (}}\dfrac{v}{2}{{\text{)}}^2} \cr
& \Rightarrow {\text{K}}{\text{.}}{{\text{E}}_{new}}{\text{ = }}\dfrac{1}{2}m\dfrac{{{v^2}}}{4} \cr
& \therefore {\text{K}}{\text{.}}{{\text{E}}_{new}}{\text{ = }}\dfrac{{m{v^2}}}{8} \cr
& {\text{Now as asked we need to find the decrease}} \cr
& \Delta {\text{K}}{\text{.E = }}\dfrac{{m{v^2}}}{2}{\text{ - }}\dfrac{{m{v^2}}}{8}{\text{ }} \cr
& \therefore \Delta {\text{K}}{\text{.E = }}\dfrac{3}{4}m{v^2} \cr
& {\text{Kinetic energy will decrease by }}\dfrac{3}{4}th{\text{ of initial kinetic energy}} \cr} $.
Additional information: Although the concept of kinetic energy dates back to the days of Aristotle, Lord Kelvin is first credited with using the term around 1849. Kinetic energy, the form of energy that is caused by the motion of an object or particle. If work, which transfers energy, is done by applying a net force on an object, the object moves and from which kinetic energy is obtained. The kinetic energy is the property of a moving object or particle also depends not only on the speed but also on the mass. The type of movement can be translation (or movement along a path from one place to another), moving around a spindle, vibration or any combination of movements.
There are two main types of kinetic energy: translational and rotational. The translational kinetic energy depends on the motion through space, and the rotational kinetic energy depends on the motion centered on the axis.
Note: The kinetic energy for any moving object can be calculated as long as the mass and speed of the objects are known. The unit used to measure kinetic energy is called Joule. If there are units of kilograms in mass and speed of meters per second, then kinetic energy consists of units of square-kilograms-kilograms per second.
${\text{K}}{\text{.E = }}\dfrac{1}{2}m{v^2}$
Complete step by step solution:
We know for kinetic energy, body must have velocity
Let initial velocity = v
$\eqalign{
& {\text{Also Kinetic energy is equal to}} \cr
& {\text{K}}{\text{.E}}{\text{. = }}\dfrac{1}{2}m{v^2} \cr
& {\text{given velocity decreased to half , so new velocity v'}} \cr
& {\text{v' = }}\dfrac{v}{2} \cr
& \Rightarrow {\text{K}}{\text{.}}{{\text{E}}_{new}} = {\text{ }}\dfrac{1}{2}m \times {\text{ (}}\dfrac{v}{2}{{\text{)}}^2} \cr
& \Rightarrow {\text{K}}{\text{.}}{{\text{E}}_{new}}{\text{ = }}\dfrac{1}{2}m\dfrac{{{v^2}}}{4} \cr
& \therefore {\text{K}}{\text{.}}{{\text{E}}_{new}}{\text{ = }}\dfrac{{m{v^2}}}{8} \cr
& {\text{Now as asked we need to find the decrease}} \cr
& \Delta {\text{K}}{\text{.E = }}\dfrac{{m{v^2}}}{2}{\text{ - }}\dfrac{{m{v^2}}}{8}{\text{ }} \cr
& \therefore \Delta {\text{K}}{\text{.E = }}\dfrac{3}{4}m{v^2} \cr
& {\text{Kinetic energy will decrease by }}\dfrac{3}{4}th{\text{ of initial kinetic energy}} \cr} $.
Additional information: Although the concept of kinetic energy dates back to the days of Aristotle, Lord Kelvin is first credited with using the term around 1849. Kinetic energy, the form of energy that is caused by the motion of an object or particle. If work, which transfers energy, is done by applying a net force on an object, the object moves and from which kinetic energy is obtained. The kinetic energy is the property of a moving object or particle also depends not only on the speed but also on the mass. The type of movement can be translation (or movement along a path from one place to another), moving around a spindle, vibration or any combination of movements.
There are two main types of kinetic energy: translational and rotational. The translational kinetic energy depends on the motion through space, and the rotational kinetic energy depends on the motion centered on the axis.
Note: The kinetic energy for any moving object can be calculated as long as the mass and speed of the objects are known. The unit used to measure kinetic energy is called Joule. If there are units of kilograms in mass and speed of meters per second, then kinetic energy consists of units of square-kilograms-kilograms per second.
Recently Updated Pages
JEE Main 2023 (January 29th Shift 1) Physics Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2022 (June 24th Shift 1) Physics Question Paper with Answer Key

Equivalent Capacitance - Important Concepts and Tips for JEE

JEE Main 2023 (April 6th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
