
Bond dissociation enthalpy of${{H}_{2}}$,$C{{l}_{2}}$ and $HCl$are 434, 242, and 431 KJ/mol respectively. Enthalpy of formation of HCl is:
A. $-93kJmo{{l}^{-1}}$
B. $245kJmo{{l}^{-1}}$
C. $93kJmo{{l}^{-1}}$
D. $-245kJmo{{l}^{-1}}$
Answer
222.9k+ views
Hint: To solve this question we will first write the equation for 1 mole of HCl. As we know that enthalpy of formation $\Delta H$is given by: $\Delta H=\sum{{{H}_{R}}}-\sum{{{H}_{P}}}$
where, ${{H}_{R}}$= Enthalpy of reactant
${{H}_{P}}$= Enthalpy of product
Complete step by step solution:
- Enthalpy of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, in their most stable standard states. It is denoted by the symbol $\Delta H$.
- We will firstly write the equation for the formation of HCl as:
\[{{H}_{2}}+C{{l}_{2}}\to 2HCl\]
Now, we can write the equation of 1 mole of HCl as:
\[\dfrac{{{H}_{2}}}{2}+\dfrac{C{{l}_{2}}}{2}\to \dfrac{HCl}{2}\]
We wrote this equation because enthalpy of formation is basically for one mole only.
- Now, as we are being provided with the bond dissociation enthalpy, so we will write the formula and solve the answer:
\[\begin{align}
& \Delta H=\sum{{{H}_{R}}}-\sum{{{H}_{P}}} \\
& =\left[ \dfrac{{{H}_{2}}}{2}+\dfrac{C{{l}_{2}}}{2} \right]-\left[ 431 \right] \\
& =\left[ 218+121 \right]-\left[ 431 \right] \\
& =338-431 \\
& =-93KJ/mol \\
\end{align}\]
Hence, we can say that the correct option is (A), that is Enthalpy of formation of HCl is $-93kJmo{{l}^{-1}}$
Additional information:
- We can say that Enthalpy of formation is a special case of standard enthalpy of reaction where two or more reactants combine to form one mole of product.
- It is found that the Bond dissociation enthalpy is the change in enthalpy when one mole of covalent bonds of a compound is broken to form products in the gaseous phase.
Note:- We have seen that here the enthalpy of formation is negative, which indicates that the formation of a compound is exothermic, that is it takes less amount of energy to break bonds than the amount of energy that is released while making the bonds.
- If there is a positive enthalpy of formation then it indicates that the formation of a compound is endothermic, that is it takes a greater amount of energy to break bonds than the amount of energy that is released while making the bonds.
where, ${{H}_{R}}$= Enthalpy of reactant
${{H}_{P}}$= Enthalpy of product
Complete step by step solution:
- Enthalpy of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, in their most stable standard states. It is denoted by the symbol $\Delta H$.
- We will firstly write the equation for the formation of HCl as:
\[{{H}_{2}}+C{{l}_{2}}\to 2HCl\]
Now, we can write the equation of 1 mole of HCl as:
\[\dfrac{{{H}_{2}}}{2}+\dfrac{C{{l}_{2}}}{2}\to \dfrac{HCl}{2}\]
We wrote this equation because enthalpy of formation is basically for one mole only.
- Now, as we are being provided with the bond dissociation enthalpy, so we will write the formula and solve the answer:
\[\begin{align}
& \Delta H=\sum{{{H}_{R}}}-\sum{{{H}_{P}}} \\
& =\left[ \dfrac{{{H}_{2}}}{2}+\dfrac{C{{l}_{2}}}{2} \right]-\left[ 431 \right] \\
& =\left[ 218+121 \right]-\left[ 431 \right] \\
& =338-431 \\
& =-93KJ/mol \\
\end{align}\]
Hence, we can say that the correct option is (A), that is Enthalpy of formation of HCl is $-93kJmo{{l}^{-1}}$
Additional information:
- We can say that Enthalpy of formation is a special case of standard enthalpy of reaction where two or more reactants combine to form one mole of product.
- It is found that the Bond dissociation enthalpy is the change in enthalpy when one mole of covalent bonds of a compound is broken to form products in the gaseous phase.
Note:- We have seen that here the enthalpy of formation is negative, which indicates that the formation of a compound is exothermic, that is it takes less amount of energy to break bonds than the amount of energy that is released while making the bonds.
- If there is a positive enthalpy of formation then it indicates that the formation of a compound is endothermic, that is it takes a greater amount of energy to break bonds than the amount of energy that is released while making the bonds.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Inertial and Non-Inertial Frames of Reference

Free Radical Substitution and Its Stepwise Mechanism

Exothermic Reactions: Real-Life Examples, Equations, and Uses

JEE Main 2026 City Intimation Slip for Session 1: Release Date, Download Link & Steps

BITSAT 2026 Registration Open: Check Last Date, Exam Dates & Correction Window

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter Chapter 6 Equilibrium

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

NCERT Solutions For Class 11 Chemistry Chapter 8 Redox Reactions in Hindi - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Equilibrium in Hindi - 2025-26

JEE Advanced 2026 Notes

New Year's Day 2026: Date, Meaning & Indian Traditions

