
Bond dissociation enthalpy of${{H}_{2}}$,$C{{l}_{2}}$ and $HCl$are 434, 242, and 431 KJ/mol respectively. Enthalpy of formation of HCl is:
A. $-93kJmo{{l}^{-1}}$
B. $245kJmo{{l}^{-1}}$
C. $93kJmo{{l}^{-1}}$
D. $-245kJmo{{l}^{-1}}$
Answer
222.6k+ views
Hint: To solve this question we will first write the equation for 1 mole of HCl. As we know that enthalpy of formation $\Delta H$is given by: $\Delta H=\sum{{{H}_{R}}}-\sum{{{H}_{P}}}$
where, ${{H}_{R}}$= Enthalpy of reactant
${{H}_{P}}$= Enthalpy of product
Complete step by step solution:
- Enthalpy of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, in their most stable standard states. It is denoted by the symbol $\Delta H$.
- We will firstly write the equation for the formation of HCl as:
\[{{H}_{2}}+C{{l}_{2}}\to 2HCl\]
Now, we can write the equation of 1 mole of HCl as:
\[\dfrac{{{H}_{2}}}{2}+\dfrac{C{{l}_{2}}}{2}\to \dfrac{HCl}{2}\]
We wrote this equation because enthalpy of formation is basically for one mole only.
- Now, as we are being provided with the bond dissociation enthalpy, so we will write the formula and solve the answer:
\[\begin{align}
& \Delta H=\sum{{{H}_{R}}}-\sum{{{H}_{P}}} \\
& =\left[ \dfrac{{{H}_{2}}}{2}+\dfrac{C{{l}_{2}}}{2} \right]-\left[ 431 \right] \\
& =\left[ 218+121 \right]-\left[ 431 \right] \\
& =338-431 \\
& =-93KJ/mol \\
\end{align}\]
Hence, we can say that the correct option is (A), that is Enthalpy of formation of HCl is $-93kJmo{{l}^{-1}}$
Additional information:
- We can say that Enthalpy of formation is a special case of standard enthalpy of reaction where two or more reactants combine to form one mole of product.
- It is found that the Bond dissociation enthalpy is the change in enthalpy when one mole of covalent bonds of a compound is broken to form products in the gaseous phase.
Note:- We have seen that here the enthalpy of formation is negative, which indicates that the formation of a compound is exothermic, that is it takes less amount of energy to break bonds than the amount of energy that is released while making the bonds.
- If there is a positive enthalpy of formation then it indicates that the formation of a compound is endothermic, that is it takes a greater amount of energy to break bonds than the amount of energy that is released while making the bonds.
where, ${{H}_{R}}$= Enthalpy of reactant
${{H}_{P}}$= Enthalpy of product
Complete step by step solution:
- Enthalpy of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, in their most stable standard states. It is denoted by the symbol $\Delta H$.
- We will firstly write the equation for the formation of HCl as:
\[{{H}_{2}}+C{{l}_{2}}\to 2HCl\]
Now, we can write the equation of 1 mole of HCl as:
\[\dfrac{{{H}_{2}}}{2}+\dfrac{C{{l}_{2}}}{2}\to \dfrac{HCl}{2}\]
We wrote this equation because enthalpy of formation is basically for one mole only.
- Now, as we are being provided with the bond dissociation enthalpy, so we will write the formula and solve the answer:
\[\begin{align}
& \Delta H=\sum{{{H}_{R}}}-\sum{{{H}_{P}}} \\
& =\left[ \dfrac{{{H}_{2}}}{2}+\dfrac{C{{l}_{2}}}{2} \right]-\left[ 431 \right] \\
& =\left[ 218+121 \right]-\left[ 431 \right] \\
& =338-431 \\
& =-93KJ/mol \\
\end{align}\]
Hence, we can say that the correct option is (A), that is Enthalpy of formation of HCl is $-93kJmo{{l}^{-1}}$
Additional information:
- We can say that Enthalpy of formation is a special case of standard enthalpy of reaction where two or more reactants combine to form one mole of product.
- It is found that the Bond dissociation enthalpy is the change in enthalpy when one mole of covalent bonds of a compound is broken to form products in the gaseous phase.
Note:- We have seen that here the enthalpy of formation is negative, which indicates that the formation of a compound is exothermic, that is it takes less amount of energy to break bonds than the amount of energy that is released while making the bonds.
- If there is a positive enthalpy of formation then it indicates that the formation of a compound is endothermic, that is it takes a greater amount of energy to break bonds than the amount of energy that is released while making the bonds.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

