
Block A in the figure is released from the rest when the extension in the spring is ${x_0}\,({x_0} < Mg/k)$. The maximum downward displacement of the block will be:

A) $\dfrac{{2Mg}}{K} - 2{x_0}$
B) $\dfrac{{Mg}}{{2K}} + {x_0}$
C) $\dfrac{{2Mg}}{K} - {x_0}$
D) $\dfrac{{2Mg}}{K} + {x_0}$
Answer
232.8k+ views
Hint: In this solution, we will use the law of conservation of energy. The work done by the block in moving downwards will be compensated by an increase in the potential energy of the spring.
Formula used:
In this solution, we will use the following formula:
-Potential energy of a spring: $U = \dfrac{1}{2}k{x^2}$ where \[k\] is the spring constant and $x$ is the displacement of the spring
- Potential energy due to height : \[P = mgh\] where $m$ is the mass of the object, $g$ is the gravitational acceleration, and $h$ is the change in height
Complete step by step answer:
In the figure given to us, when the block is released from rest, the block will move downwards and, in the process, it will exert extra force on the spring causing it to extend. The extension will be such that the loss in potential energy of the object due to its downwards movement will be balanced by the potential energy that will be stored in the spring due to its extension.
When the block is not released, the potential energy of the spring will be due to a displacement ${x_0}$ as $U = \dfrac{1}{2}k{x_0}^2$
Let us assume that the maximum extension of the block will be $x$. When the spring is extended, it will have potential energy of $U' = \dfrac{1}{2}k{\left( {{x_0} + x} \right)^2}$. The decrease in potential energy of the block due to moving a height $x$downwards will be \[P = - mgx\].
Then using the law of conservation of energy, we can write that
$U = U' + P$
So, we have
$\dfrac{1}{2}k{x_0}^2 = \dfrac{1}{2}k{\left( {{x_0} + x} \right)^2} - mgx$
Opening the square term on the right side, we get
$\dfrac{1}{2}k{x_0}^2 = \dfrac{1}{2}k{x_0}^2 + k{x_0}x + \dfrac{1}{2}k{x^2} - mgx$
Further simplifying, we get
$mgx = k{x_0}x + \dfrac{1}{2}k{x^2}$
Which can be written as
\[x\left( {\dfrac{k}{2}x + k{x_0} - mg} \right) = 0\]
Solving for $x$, we get
$x = 0$ or $x = \dfrac{{2mg}}{k} - 2{x_0}$
Since a zero displacement is trivial, the displacement will be $x = \dfrac{{2mg}}{k} - 2{x_0}$ which corresponds to option (A).
Note: We must be careful not to forget the potential energy associated with the initial extension of the spring when the block is not released. Also, the potential energy of the block when it moves downwards should be negative since the block will be losing potential energy when it moves downwards. Since everything will be stationary in the final state of the system as well, there will be no kinetic energy in our calculations.
Formula used:
In this solution, we will use the following formula:
-Potential energy of a spring: $U = \dfrac{1}{2}k{x^2}$ where \[k\] is the spring constant and $x$ is the displacement of the spring
- Potential energy due to height : \[P = mgh\] where $m$ is the mass of the object, $g$ is the gravitational acceleration, and $h$ is the change in height
Complete step by step answer:
In the figure given to us, when the block is released from rest, the block will move downwards and, in the process, it will exert extra force on the spring causing it to extend. The extension will be such that the loss in potential energy of the object due to its downwards movement will be balanced by the potential energy that will be stored in the spring due to its extension.
When the block is not released, the potential energy of the spring will be due to a displacement ${x_0}$ as $U = \dfrac{1}{2}k{x_0}^2$
Let us assume that the maximum extension of the block will be $x$. When the spring is extended, it will have potential energy of $U' = \dfrac{1}{2}k{\left( {{x_0} + x} \right)^2}$. The decrease in potential energy of the block due to moving a height $x$downwards will be \[P = - mgx\].
Then using the law of conservation of energy, we can write that
$U = U' + P$
So, we have
$\dfrac{1}{2}k{x_0}^2 = \dfrac{1}{2}k{\left( {{x_0} + x} \right)^2} - mgx$
Opening the square term on the right side, we get
$\dfrac{1}{2}k{x_0}^2 = \dfrac{1}{2}k{x_0}^2 + k{x_0}x + \dfrac{1}{2}k{x^2} - mgx$
Further simplifying, we get
$mgx = k{x_0}x + \dfrac{1}{2}k{x^2}$
Which can be written as
\[x\left( {\dfrac{k}{2}x + k{x_0} - mg} \right) = 0\]
Solving for $x$, we get
$x = 0$ or $x = \dfrac{{2mg}}{k} - 2{x_0}$
Since a zero displacement is trivial, the displacement will be $x = \dfrac{{2mg}}{k} - 2{x_0}$ which corresponds to option (A).
Note: We must be careful not to forget the potential energy associated with the initial extension of the spring when the block is not released. Also, the potential energy of the block when it moves downwards should be negative since the block will be losing potential energy when it moves downwards. Since everything will be stationary in the final state of the system as well, there will be no kinetic energy in our calculations.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties of Fluids (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

NCERT Solutions For Class 11 Physics Chapter 4 Law of Motion (2025-26)

Class 11 JEE Main Physics Mock Test 2025

Inductive Effect and Its Role in Acidic Strength

