
$\beta $ -particle is emitted in radioactivity by:
A. Conversion of proton to neutron
B. From outermost orbit
C. Conversion of neutron to proton
D. Conversion of electron to proton
Answer
233.1k+ views
Hint: Radioactivity is a property of radioactive substance. Radioactive substance undergoes several modes of decay to make the radioactive nucleus stable. The radioactive nuclides undergo decay to give alpha, beta, gamma, X-rays. All this rays have different energy, different characteristics.
Complete Step by Step Solution:
$\beta $ -rays consist of beta particles. The beta particles are actually high energetic electrons. Electrons are negatively charged particles of the nucleus that revolve around the nucleus. Due to the presence of positively charged protons in the nucleus an atom remains stable with negatively charged electrons.
During radioactive decay a radioactive nucleus beta particle and then neutron of the nucleus is internally converted into a proton and one particle called antineutrino which has zero mass and zero charge is emitted to balance the law of conservation of mass.
The reaction of emission of beta particle from a radioactive nucleus can be given as follows-
${}_{0}^{1}n\to {}_{1}^{1}p+{{e}^{-}}+\gamma {}_{0}^{0}$
Thus the correct option is C.
Note: The modes of decay of a radioactive nucleus can be determined by neutron to proton ratio of the nucleus. If the neutron to proton ratio lies above the stability zone then the nucleus shows beta particle emission and a neutron is internally converted to a proton to decrease the neutron to proton ratio.
Complete Step by Step Solution:
$\beta $ -rays consist of beta particles. The beta particles are actually high energetic electrons. Electrons are negatively charged particles of the nucleus that revolve around the nucleus. Due to the presence of positively charged protons in the nucleus an atom remains stable with negatively charged electrons.
During radioactive decay a radioactive nucleus beta particle and then neutron of the nucleus is internally converted into a proton and one particle called antineutrino which has zero mass and zero charge is emitted to balance the law of conservation of mass.
The reaction of emission of beta particle from a radioactive nucleus can be given as follows-
${}_{0}^{1}n\to {}_{1}^{1}p+{{e}^{-}}+\gamma {}_{0}^{0}$
Thus the correct option is C.
Note: The modes of decay of a radioactive nucleus can be determined by neutron to proton ratio of the nucleus. If the neutron to proton ratio lies above the stability zone then the nucleus shows beta particle emission and a neutron is internally converted to a proton to decrease the neutron to proton ratio.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

