
What is the average distance and the most probable distance of an electron from the nucleus in the 1s orbital of a hydrogen atom? ( \[{a_0}\] = the radius of the first Bohr orbit)
A.1.5 \[{a_0}\] and \[{a_0}\]
B.\[{a_0}\] and 5 \[{a_0}\]
C.1.5 \[{a_0}\]and 5 \[{a_0}\]
D. \[{a_0}\] and 0.5 \[{a_0}\]
Answer
162.3k+ views
Hint: The most probable distance is the distance where the electron is highest probable so it is the radius of that orbit and the average distance is the expectation value of the distance of an electron from the nucleus.
Complete step by step answer:
-The average distance is the expectation value of the distance of an electron from the nucleus i.e. if the radius of the first Bohr orbit is \[{a_0}\] , the average distance of an electron from the nucleus in the 1s orbital of a hydrogen atom can be calculated by the formula \[r = 0.529 \times \dfrac{{{n^2}}}{Z}\mathop A\limits^o \]. This is the expression for the radius of Bohr’s orbit in hydrogen and hydrogen like species. So, the average will be 3/2 \[{a_0}\] or 1.5 \[{a_0}\]. It is calculated by the following integral-
\[\left\langle r \right\rangle = \int\limits_0^\infty {r\dfrac{{dP}}{{dr}}} dr = \dfrac{4}{{a_0^3}}\int\limits_0^\infty {{r^3}} {e^{ - 2r/{a_0}}}dr\]
Since all the terms containing r will be zero due to integration by parts, we get \[\left\langle r \right\rangle = \dfrac{{3{a_0}}}{2}\]. Thus proved.
-In order to find the maximum and minimum of a function, we usually take the derivative of the function with respect to the variable and set the derivative equal to zero. Similarly, to find the most probable distance of an electron we take the derivative of the probability density P(r) with respect to r and set it equal to zero.
\[{P_{10}} = \dfrac{{4{r^2}}}{{a_0^3}}{e^{ - 2r/{a_0}}}\] this is the equation for the probability density for 1s orbital of a hydrogen atom. Taking its derivative with respect to r and setting it equal to zero results in,
\[\dfrac{d}{{dr}}{P_{10}}(r) = 0 = \dfrac{d}{{dr}}\left( {\dfrac{{4{r^2}}}{{a_0^3}}{e^{ - 2r/{a_0}}}} \right)\]
\[
\dfrac{{2{r^2}}}{{{a_0}}} = 2r \\
\therefore r = {a_0} \\
\]
The most probable distance is the distance where the electron is highest probable so it is the radius of that orbit \[{a_0}\] which is equal to 0.529 \[\mathop A\limits^o \].
Hence, the correct option is (A).
Note:
The probability density accounts for the average being greater than the most probable value i.e. 1.5 times the most probable value. This is explained by Schrodinger equation as 1s orbital is spherically symmetrical and has no angular terms.
Complete step by step answer:
-The average distance is the expectation value of the distance of an electron from the nucleus i.e. if the radius of the first Bohr orbit is \[{a_0}\] , the average distance of an electron from the nucleus in the 1s orbital of a hydrogen atom can be calculated by the formula \[r = 0.529 \times \dfrac{{{n^2}}}{Z}\mathop A\limits^o \]. This is the expression for the radius of Bohr’s orbit in hydrogen and hydrogen like species. So, the average will be 3/2 \[{a_0}\] or 1.5 \[{a_0}\]. It is calculated by the following integral-
\[\left\langle r \right\rangle = \int\limits_0^\infty {r\dfrac{{dP}}{{dr}}} dr = \dfrac{4}{{a_0^3}}\int\limits_0^\infty {{r^3}} {e^{ - 2r/{a_0}}}dr\]
Since all the terms containing r will be zero due to integration by parts, we get \[\left\langle r \right\rangle = \dfrac{{3{a_0}}}{2}\]. Thus proved.
-In order to find the maximum and minimum of a function, we usually take the derivative of the function with respect to the variable and set the derivative equal to zero. Similarly, to find the most probable distance of an electron we take the derivative of the probability density P(r) with respect to r and set it equal to zero.
\[{P_{10}} = \dfrac{{4{r^2}}}{{a_0^3}}{e^{ - 2r/{a_0}}}\] this is the equation for the probability density for 1s orbital of a hydrogen atom. Taking its derivative with respect to r and setting it equal to zero results in,
\[\dfrac{d}{{dr}}{P_{10}}(r) = 0 = \dfrac{d}{{dr}}\left( {\dfrac{{4{r^2}}}{{a_0^3}}{e^{ - 2r/{a_0}}}} \right)\]
\[
\dfrac{{2{r^2}}}{{{a_0}}} = 2r \\
\therefore r = {a_0} \\
\]
The most probable distance is the distance where the electron is highest probable so it is the radius of that orbit \[{a_0}\] which is equal to 0.529 \[\mathop A\limits^o \].
Hence, the correct option is (A).
Note:
The probability density accounts for the average being greater than the most probable value i.e. 1.5 times the most probable value. This is explained by Schrodinger equation as 1s orbital is spherically symmetrical and has no angular terms.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
