
What is the average distance and the most probable distance of an electron from the nucleus in the 1s orbital of a hydrogen atom? ( \[{a_0}\] = the radius of the first Bohr orbit)
A.1.5 \[{a_0}\] and \[{a_0}\]
B.\[{a_0}\] and 5 \[{a_0}\]
C.1.5 \[{a_0}\]and 5 \[{a_0}\]
D. \[{a_0}\] and 0.5 \[{a_0}\]
Answer
221.1k+ views
Hint: The most probable distance is the distance where the electron is highest probable so it is the radius of that orbit and the average distance is the expectation value of the distance of an electron from the nucleus.
Complete step by step answer:
-The average distance is the expectation value of the distance of an electron from the nucleus i.e. if the radius of the first Bohr orbit is \[{a_0}\] , the average distance of an electron from the nucleus in the 1s orbital of a hydrogen atom can be calculated by the formula \[r = 0.529 \times \dfrac{{{n^2}}}{Z}\mathop A\limits^o \]. This is the expression for the radius of Bohr’s orbit in hydrogen and hydrogen like species. So, the average will be 3/2 \[{a_0}\] or 1.5 \[{a_0}\]. It is calculated by the following integral-
\[\left\langle r \right\rangle = \int\limits_0^\infty {r\dfrac{{dP}}{{dr}}} dr = \dfrac{4}{{a_0^3}}\int\limits_0^\infty {{r^3}} {e^{ - 2r/{a_0}}}dr\]
Since all the terms containing r will be zero due to integration by parts, we get \[\left\langle r \right\rangle = \dfrac{{3{a_0}}}{2}\]. Thus proved.
-In order to find the maximum and minimum of a function, we usually take the derivative of the function with respect to the variable and set the derivative equal to zero. Similarly, to find the most probable distance of an electron we take the derivative of the probability density P(r) with respect to r and set it equal to zero.
\[{P_{10}} = \dfrac{{4{r^2}}}{{a_0^3}}{e^{ - 2r/{a_0}}}\] this is the equation for the probability density for 1s orbital of a hydrogen atom. Taking its derivative with respect to r and setting it equal to zero results in,
\[\dfrac{d}{{dr}}{P_{10}}(r) = 0 = \dfrac{d}{{dr}}\left( {\dfrac{{4{r^2}}}{{a_0^3}}{e^{ - 2r/{a_0}}}} \right)\]
\[
\dfrac{{2{r^2}}}{{{a_0}}} = 2r \\
\therefore r = {a_0} \\
\]
The most probable distance is the distance where the electron is highest probable so it is the radius of that orbit \[{a_0}\] which is equal to 0.529 \[\mathop A\limits^o \].
Hence, the correct option is (A).
Note:
The probability density accounts for the average being greater than the most probable value i.e. 1.5 times the most probable value. This is explained by Schrodinger equation as 1s orbital is spherically symmetrical and has no angular terms.
Complete step by step answer:
-The average distance is the expectation value of the distance of an electron from the nucleus i.e. if the radius of the first Bohr orbit is \[{a_0}\] , the average distance of an electron from the nucleus in the 1s orbital of a hydrogen atom can be calculated by the formula \[r = 0.529 \times \dfrac{{{n^2}}}{Z}\mathop A\limits^o \]. This is the expression for the radius of Bohr’s orbit in hydrogen and hydrogen like species. So, the average will be 3/2 \[{a_0}\] or 1.5 \[{a_0}\]. It is calculated by the following integral-
\[\left\langle r \right\rangle = \int\limits_0^\infty {r\dfrac{{dP}}{{dr}}} dr = \dfrac{4}{{a_0^3}}\int\limits_0^\infty {{r^3}} {e^{ - 2r/{a_0}}}dr\]
Since all the terms containing r will be zero due to integration by parts, we get \[\left\langle r \right\rangle = \dfrac{{3{a_0}}}{2}\]. Thus proved.
-In order to find the maximum and minimum of a function, we usually take the derivative of the function with respect to the variable and set the derivative equal to zero. Similarly, to find the most probable distance of an electron we take the derivative of the probability density P(r) with respect to r and set it equal to zero.
\[{P_{10}} = \dfrac{{4{r^2}}}{{a_0^3}}{e^{ - 2r/{a_0}}}\] this is the equation for the probability density for 1s orbital of a hydrogen atom. Taking its derivative with respect to r and setting it equal to zero results in,
\[\dfrac{d}{{dr}}{P_{10}}(r) = 0 = \dfrac{d}{{dr}}\left( {\dfrac{{4{r^2}}}{{a_0^3}}{e^{ - 2r/{a_0}}}} \right)\]
\[
\dfrac{{2{r^2}}}{{{a_0}}} = 2r \\
\therefore r = {a_0} \\
\]
The most probable distance is the distance where the electron is highest probable so it is the radius of that orbit \[{a_0}\] which is equal to 0.529 \[\mathop A\limits^o \].
Hence, the correct option is (A).
Note:
The probability density accounts for the average being greater than the most probable value i.e. 1.5 times the most probable value. This is explained by Schrodinger equation as 1s orbital is spherically symmetrical and has no angular terms.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

