
At what distance on the axis, from the centre of a circular current carrying coil of radius ${{r}}$, the magnetic field becomes $(\dfrac{1}{8})^{th}$ of the magnetic field at centre?
A) $\sqrt {{2}} {{r}}$
B) $2^{3/2} r$
C) $\sqrt{3} r$
D) $3 \sqrt{{2}} {{r}} $
Answer
219k+ views
Hint: First of all, write the formula of magnetic field on the axis of the circular coil i.e. $B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$ and then write the formula of magnetic field from the centre of a circular current carrying coil i.e. ${{B' = }}\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$. Use these two formulas and the given relation in the question and then equate.
Complete step by step solution:
Given: Radius of current carrying coil is ${{r}}$
Magnetic field at the axis is $(\dfrac{1}{8})^{th}$ times to that of the magnetic field at centre
To find: Distance on the axis
Formula for magnetic field on the axis of the circular coil is given by:
$B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$
Formula for magnetic at the center of the circular coil is given by
${{B' = }}\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
According to the given question, ${{B = }}\dfrac{{{1}}}{{{8}}}{{B'}}$
On substituting the values in above relation, we get
$\Rightarrow B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$ = $\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
On simplification, we get
$\Rightarrow 8r^3 = (r^2 + z^2)^{3/2}$
On rearranging the terms and on further simplification, we get
$\Rightarrow (4r^2)^3 = (r^2 + z^2)^3$
Taking cube root both sides, we get
$\Rightarrow 4r^2 = r^2 +z^2$
Again on rearranging terms, we get
$\Rightarrow z = \sqrt{{3}} r$
Thus, at distance, $z = \sqrt{{3}} r$ on the axis, from the centre of a circular current carrying coil of radius${{r}}$, the magnetic field becomes $(\dfrac{1}{8})^{th}$ of the magnetic field at centre.
Therefore, option (C) is the correct choice.
Note: The value of the magnetic field varies along the axis of the coil as at the centre of the coil, the magnetic field will be uniform. Just as the location of the point increases from the centre of the coil, then the value of the magnetic field decreases where ${{{\mu }}_{{0}}}$ the value of absolute permeability in free space. However, the horizontal component of the earth's magnetic field varies greatly over the surface of the earth.
Complete step by step solution:
Given: Radius of current carrying coil is ${{r}}$
Magnetic field at the axis is $(\dfrac{1}{8})^{th}$ times to that of the magnetic field at centre
To find: Distance on the axis
Formula for magnetic field on the axis of the circular coil is given by:
$B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$
Formula for magnetic at the center of the circular coil is given by
${{B' = }}\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
According to the given question, ${{B = }}\dfrac{{{1}}}{{{8}}}{{B'}}$
On substituting the values in above relation, we get
$\Rightarrow B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$ = $\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
On simplification, we get
$\Rightarrow 8r^3 = (r^2 + z^2)^{3/2}$
On rearranging the terms and on further simplification, we get
$\Rightarrow (4r^2)^3 = (r^2 + z^2)^3$
Taking cube root both sides, we get
$\Rightarrow 4r^2 = r^2 +z^2$
Again on rearranging terms, we get
$\Rightarrow z = \sqrt{{3}} r$
Thus, at distance, $z = \sqrt{{3}} r$ on the axis, from the centre of a circular current carrying coil of radius${{r}}$, the magnetic field becomes $(\dfrac{1}{8})^{th}$ of the magnetic field at centre.
Therefore, option (C) is the correct choice.
Note: The value of the magnetic field varies along the axis of the coil as at the centre of the coil, the magnetic field will be uniform. Just as the location of the point increases from the centre of the coil, then the value of the magnetic field decreases where ${{{\mu }}_{{0}}}$ the value of absolute permeability in free space. However, the horizontal component of the earth's magnetic field varies greatly over the surface of the earth.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

