
At what distance on the axis, from the centre of a circular current carrying coil of radius ${{r}}$, the magnetic field becomes $(\dfrac{1}{8})^{th}$ of the magnetic field at centre?
A) $\sqrt {{2}} {{r}}$
B) $2^{3/2} r$
C) $\sqrt{3} r$
D) $3 \sqrt{{2}} {{r}} $
Answer
232.8k+ views
Hint: First of all, write the formula of magnetic field on the axis of the circular coil i.e. $B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$ and then write the formula of magnetic field from the centre of a circular current carrying coil i.e. ${{B' = }}\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$. Use these two formulas and the given relation in the question and then equate.
Complete step by step solution:
Given: Radius of current carrying coil is ${{r}}$
Magnetic field at the axis is $(\dfrac{1}{8})^{th}$ times to that of the magnetic field at centre
To find: Distance on the axis
Formula for magnetic field on the axis of the circular coil is given by:
$B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$
Formula for magnetic at the center of the circular coil is given by
${{B' = }}\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
According to the given question, ${{B = }}\dfrac{{{1}}}{{{8}}}{{B'}}$
On substituting the values in above relation, we get
$\Rightarrow B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$ = $\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
On simplification, we get
$\Rightarrow 8r^3 = (r^2 + z^2)^{3/2}$
On rearranging the terms and on further simplification, we get
$\Rightarrow (4r^2)^3 = (r^2 + z^2)^3$
Taking cube root both sides, we get
$\Rightarrow 4r^2 = r^2 +z^2$
Again on rearranging terms, we get
$\Rightarrow z = \sqrt{{3}} r$
Thus, at distance, $z = \sqrt{{3}} r$ on the axis, from the centre of a circular current carrying coil of radius${{r}}$, the magnetic field becomes $(\dfrac{1}{8})^{th}$ of the magnetic field at centre.
Therefore, option (C) is the correct choice.
Note: The value of the magnetic field varies along the axis of the coil as at the centre of the coil, the magnetic field will be uniform. Just as the location of the point increases from the centre of the coil, then the value of the magnetic field decreases where ${{{\mu }}_{{0}}}$ the value of absolute permeability in free space. However, the horizontal component of the earth's magnetic field varies greatly over the surface of the earth.
Complete step by step solution:
Given: Radius of current carrying coil is ${{r}}$
Magnetic field at the axis is $(\dfrac{1}{8})^{th}$ times to that of the magnetic field at centre
To find: Distance on the axis
Formula for magnetic field on the axis of the circular coil is given by:
$B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$
Formula for magnetic at the center of the circular coil is given by
${{B' = }}\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
According to the given question, ${{B = }}\dfrac{{{1}}}{{{8}}}{{B'}}$
On substituting the values in above relation, we get
$\Rightarrow B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$ = $\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
On simplification, we get
$\Rightarrow 8r^3 = (r^2 + z^2)^{3/2}$
On rearranging the terms and on further simplification, we get
$\Rightarrow (4r^2)^3 = (r^2 + z^2)^3$
Taking cube root both sides, we get
$\Rightarrow 4r^2 = r^2 +z^2$
Again on rearranging terms, we get
$\Rightarrow z = \sqrt{{3}} r$
Thus, at distance, $z = \sqrt{{3}} r$ on the axis, from the centre of a circular current carrying coil of radius${{r}}$, the magnetic field becomes $(\dfrac{1}{8})^{th}$ of the magnetic field at centre.
Therefore, option (C) is the correct choice.
Note: The value of the magnetic field varies along the axis of the coil as at the centre of the coil, the magnetic field will be uniform. Just as the location of the point increases from the centre of the coil, then the value of the magnetic field decreases where ${{{\mu }}_{{0}}}$ the value of absolute permeability in free space. However, the horizontal component of the earth's magnetic field varies greatly over the surface of the earth.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

