
At what angles for the first order diffraction, spacing between two planes, respectively, are $\lambda $ and $\dfrac{\lambda }{2}$ ?
(A) ${0^ \circ },{90^ \circ }$
(B) ${90^ \circ },{0^ \circ }$
(C) ${30^ \circ },{90^ \circ }$
(D) ${90^ \circ },{30^ \circ }$
Answer
123.3k+ views
Hint: The equation that relates the interplanar distance and the angle of diffraction is the Bragg’s equation and it can be given as
\[2d\sin \theta = n\lambda \]
Complete step by step solution:
Bragg’s law gives the angles for the coherent and incoherent scattering of light from a crystal lattice. We know that in crystalline solid, the light waves are scattered from the lattice planes which are separated by the interplanar distance d.
- Scientist Bragg gave the relation between the path differences between the two waves undergo interference and diffraction angle. The Bragg’s equation is given as
\[2d\sin \theta = n\lambda \]
Where d is interplanar distance and n is a positive integer. $\lambda $ is the wavelength of the incident wave.
- We are provided with the question that the diffraction is of first order. So, the value of n is 1.
- Now, in one case, we are given that the interplanar distance is $\lambda $. So, in that case, the Bragg equation will be
\[2d\sin \theta = n\lambda \]
Putting the available values, we will get
\[2\lambda \sin \theta = (1)\lambda \]
So,
\[\sin \theta = \dfrac{\lambda }{{2\lambda }} = \dfrac{1}{2}\]
So, we can say that $\sin {30^ \circ } = \dfrac{1}{2}$ .
So, $\theta = {30^ \circ }$
In the second case, we are given that the interplanar distance is $\dfrac{\lambda }{2}$. So, putting this in the Bragg’s equation will give
\[2\left( {\dfrac{\lambda }{2}} \right)\sin \theta = (1)\lambda \]
So, we can write that
\[\sin \theta = \dfrac{{2\lambda }}{{2\lambda }} = 1\]
Thus, $\sin {90^ \circ } = 1$
So, we got that $\theta = {90^ \circ }$
Thus, we obtained that the angles will be ${30^ \circ }{\text{ and 9}}{{\text{0}}^ \circ }$ respectively.
Therefore, the correct answer is (C).
Note: Note that in the equation, n is the order of diffraction and it is always an integer value. With Bragg's law, we can find the lattice spacing for different cubic lattice systems which also includes the use of Miller indices.
\[2d\sin \theta = n\lambda \]
Complete step by step solution:
Bragg’s law gives the angles for the coherent and incoherent scattering of light from a crystal lattice. We know that in crystalline solid, the light waves are scattered from the lattice planes which are separated by the interplanar distance d.
- Scientist Bragg gave the relation between the path differences between the two waves undergo interference and diffraction angle. The Bragg’s equation is given as
\[2d\sin \theta = n\lambda \]
Where d is interplanar distance and n is a positive integer. $\lambda $ is the wavelength of the incident wave.
- We are provided with the question that the diffraction is of first order. So, the value of n is 1.
- Now, in one case, we are given that the interplanar distance is $\lambda $. So, in that case, the Bragg equation will be
\[2d\sin \theta = n\lambda \]
Putting the available values, we will get
\[2\lambda \sin \theta = (1)\lambda \]
So,
\[\sin \theta = \dfrac{\lambda }{{2\lambda }} = \dfrac{1}{2}\]
So, we can say that $\sin {30^ \circ } = \dfrac{1}{2}$ .
So, $\theta = {30^ \circ }$
In the second case, we are given that the interplanar distance is $\dfrac{\lambda }{2}$. So, putting this in the Bragg’s equation will give
\[2\left( {\dfrac{\lambda }{2}} \right)\sin \theta = (1)\lambda \]
So, we can write that
\[\sin \theta = \dfrac{{2\lambda }}{{2\lambda }} = 1\]
Thus, $\sin {90^ \circ } = 1$
So, we got that $\theta = {90^ \circ }$
Thus, we obtained that the angles will be ${30^ \circ }{\text{ and 9}}{{\text{0}}^ \circ }$ respectively.
Therefore, the correct answer is (C).
Note: Note that in the equation, n is the order of diffraction and it is always an integer value. With Bragg's law, we can find the lattice spacing for different cubic lattice systems which also includes the use of Miller indices.
Recently Updated Pages
Classification of Drugs Based on Pharmacological Effect, Drug Action

Types of Solutions - Solution in Chemistry

Difference Between Alcohol and Phenol

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Chemistry Online Mock Test for Class 12

JEE Main Chemistry Exam Pattern 2025

Collision - Important Concepts and Tips for JEE

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Clemmenson and Wolff Kishner Reductions for JEE

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Alcohol Phenol and Ether Class 12 Notes: CBSE Chemistry Chapter 7

NCERT Solutions for Class 12 Chemistry Chapter 3 Chemical Kinetics

JEE Main 2022 June 25 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Maths Paper Pattern 2025
