
At what angles for the first order diffraction, spacing between two planes, respectively, are $\lambda $ and $\dfrac{\lambda }{2}$ ?
(A) ${0^ \circ },{90^ \circ }$
(B) ${90^ \circ },{0^ \circ }$
(C) ${30^ \circ },{90^ \circ }$
(D) ${90^ \circ },{30^ \circ }$
Answer
219k+ views
Hint: The equation that relates the interplanar distance and the angle of diffraction is the Bragg’s equation and it can be given as
\[2d\sin \theta = n\lambda \]
Complete step by step solution:
Bragg’s law gives the angles for the coherent and incoherent scattering of light from a crystal lattice. We know that in crystalline solid, the light waves are scattered from the lattice planes which are separated by the interplanar distance d.
- Scientist Bragg gave the relation between the path differences between the two waves undergo interference and diffraction angle. The Bragg’s equation is given as
\[2d\sin \theta = n\lambda \]
Where d is interplanar distance and n is a positive integer. $\lambda $ is the wavelength of the incident wave.
- We are provided with the question that the diffraction is of first order. So, the value of n is 1.
- Now, in one case, we are given that the interplanar distance is $\lambda $. So, in that case, the Bragg equation will be
\[2d\sin \theta = n\lambda \]
Putting the available values, we will get
\[2\lambda \sin \theta = (1)\lambda \]
So,
\[\sin \theta = \dfrac{\lambda }{{2\lambda }} = \dfrac{1}{2}\]
So, we can say that $\sin {30^ \circ } = \dfrac{1}{2}$ .
So, $\theta = {30^ \circ }$
In the second case, we are given that the interplanar distance is $\dfrac{\lambda }{2}$. So, putting this in the Bragg’s equation will give
\[2\left( {\dfrac{\lambda }{2}} \right)\sin \theta = (1)\lambda \]
So, we can write that
\[\sin \theta = \dfrac{{2\lambda }}{{2\lambda }} = 1\]
Thus, $\sin {90^ \circ } = 1$
So, we got that $\theta = {90^ \circ }$
Thus, we obtained that the angles will be ${30^ \circ }{\text{ and 9}}{{\text{0}}^ \circ }$ respectively.
Therefore, the correct answer is (C).
Note: Note that in the equation, n is the order of diffraction and it is always an integer value. With Bragg's law, we can find the lattice spacing for different cubic lattice systems which also includes the use of Miller indices.
\[2d\sin \theta = n\lambda \]
Complete step by step solution:
Bragg’s law gives the angles for the coherent and incoherent scattering of light from a crystal lattice. We know that in crystalline solid, the light waves are scattered from the lattice planes which are separated by the interplanar distance d.
- Scientist Bragg gave the relation between the path differences between the two waves undergo interference and diffraction angle. The Bragg’s equation is given as
\[2d\sin \theta = n\lambda \]
Where d is interplanar distance and n is a positive integer. $\lambda $ is the wavelength of the incident wave.
- We are provided with the question that the diffraction is of first order. So, the value of n is 1.
- Now, in one case, we are given that the interplanar distance is $\lambda $. So, in that case, the Bragg equation will be
\[2d\sin \theta = n\lambda \]
Putting the available values, we will get
\[2\lambda \sin \theta = (1)\lambda \]
So,
\[\sin \theta = \dfrac{\lambda }{{2\lambda }} = \dfrac{1}{2}\]
So, we can say that $\sin {30^ \circ } = \dfrac{1}{2}$ .
So, $\theta = {30^ \circ }$
In the second case, we are given that the interplanar distance is $\dfrac{\lambda }{2}$. So, putting this in the Bragg’s equation will give
\[2\left( {\dfrac{\lambda }{2}} \right)\sin \theta = (1)\lambda \]
So, we can write that
\[\sin \theta = \dfrac{{2\lambda }}{{2\lambda }} = 1\]
Thus, $\sin {90^ \circ } = 1$
So, we got that $\theta = {90^ \circ }$
Thus, we obtained that the angles will be ${30^ \circ }{\text{ and 9}}{{\text{0}}^ \circ }$ respectively.
Therefore, the correct answer is (C).
Note: Note that in the equation, n is the order of diffraction and it is always an integer value. With Bragg's law, we can find the lattice spacing for different cubic lattice systems which also includes the use of Miller indices.
Recently Updated Pages
Is PPh3 a strong ligand class 12 chemistry JEE_Main

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Find the isoelectric point pI of Lysine A 556 B 974 class 12 chemistry JEE_Main

The order of basicity among the following compounds class 12 chemistry JEE_Main

The number of isomers in C4H10O are a7 b8 c6 d5 class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Haloalkanes and Haloarenes Class 12 Chemistry Chapter 6 CBSE Notes - 2025-26

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

