
At very high pressure, the compressibility factor of one mole of gas is given by:
(A) $1 + \dfrac{{pb}}{{RT}}$
(B) $1 - \dfrac{{pb}}{{RT}}$
(C) $1 - \dfrac{b}{{(VRT)}}$
(D) $\dfrac{{pb}}{{RT}}$
Answer
222k+ views
Hint: Compressibility factor is also known as gas deviation factor. This is a correction factor which describes the deviation of real gas from ideal gas.
Complete step by step answer:
The real gases obey the ideal gas equation $(PV = nRT)$ only if pressure is low or temperature is high.
Van der waals equation for one mole of Real gas is given by
$\Rightarrow \left[ {p + \dfrac{q}{{{V^2}}}} \right]\left[ {V - b} \right] = RT$ . . . . . (1)
And for $n$ moles of gas
$\Rightarrow \left[ {p + \dfrac{q}{{{V^2}}}} \right]\left[ {V - nb} \right] = RT$
Where ‘a’ and ‘b’ are constants and called Van der Waals constants. Their values depend upon the nature of gas.
At high pressure $\dfrac{a}{{{V^2}}}$ can be neglected.
$\therefore $equation (1) becomes
$\Rightarrow P[v - b] = RT$
$\Rightarrow PV - Pb = RT$. . . . . (2)
Dividing equation (2) by $RT$ we get
$\Rightarrow \dfrac{{PV}}{{RT}} - \dfrac{{Pb}}{{RT}} = 1$
$\Rightarrow \dfrac{{PV}}{{RT}} = 1 + \dfrac{{Pb}}{{RT}}$ . . . . . (3)
$\Rightarrow Z = \dfrac{{PV}}{{RT}}$ . . . . . (4)
$\Rightarrow Z = 1 + \dfrac{{Pb}}{{RT}}$
Where $Z$ = compressibility factor
Therefore, at high pressure compressibility factor is $1 + \dfrac{{Pb}}{{RT}}$
Therefore, by the above explanation, the correct option is [A] $1 + \dfrac{{Pb}}{{RT}}$
Additional information:
At high pressure, compressibility factor is greater than $1$.
As $P$ is increased (at constant T). The factor $\dfrac{{Pb}}{{RT}}$ increases. This explains how compressibility increases continuously with pressure.
Van der Waals constants $a$ and $b$ have significance of attractive force among molecules of gas and value of $b$ is a measure of the effective size of gas molecules.
Note: A gas which obeys the ideal gas equation $PV = nRT$ under all conditions of temperature and pressure is called ideal gas. Concept of ideal gas is only theoretical when pressure is low and temperature is high. They obey the gas law. Such gases are known as Real gases. All gases are Real gases.
Complete step by step answer:
The real gases obey the ideal gas equation $(PV = nRT)$ only if pressure is low or temperature is high.
Van der waals equation for one mole of Real gas is given by
$\Rightarrow \left[ {p + \dfrac{q}{{{V^2}}}} \right]\left[ {V - b} \right] = RT$ . . . . . (1)
And for $n$ moles of gas
$\Rightarrow \left[ {p + \dfrac{q}{{{V^2}}}} \right]\left[ {V - nb} \right] = RT$
Where ‘a’ and ‘b’ are constants and called Van der Waals constants. Their values depend upon the nature of gas.
At high pressure $\dfrac{a}{{{V^2}}}$ can be neglected.
$\therefore $equation (1) becomes
$\Rightarrow P[v - b] = RT$
$\Rightarrow PV - Pb = RT$. . . . . (2)
Dividing equation (2) by $RT$ we get
$\Rightarrow \dfrac{{PV}}{{RT}} - \dfrac{{Pb}}{{RT}} = 1$
$\Rightarrow \dfrac{{PV}}{{RT}} = 1 + \dfrac{{Pb}}{{RT}}$ . . . . . (3)
$\Rightarrow Z = \dfrac{{PV}}{{RT}}$ . . . . . (4)
$\Rightarrow Z = 1 + \dfrac{{Pb}}{{RT}}$
Where $Z$ = compressibility factor
Therefore, at high pressure compressibility factor is $1 + \dfrac{{Pb}}{{RT}}$
Therefore, by the above explanation, the correct option is [A] $1 + \dfrac{{Pb}}{{RT}}$
Additional information:
At high pressure, compressibility factor is greater than $1$.
As $P$ is increased (at constant T). The factor $\dfrac{{Pb}}{{RT}}$ increases. This explains how compressibility increases continuously with pressure.
Van der Waals constants $a$ and $b$ have significance of attractive force among molecules of gas and value of $b$ is a measure of the effective size of gas molecules.
Note: A gas which obeys the ideal gas equation $PV = nRT$ under all conditions of temperature and pressure is called ideal gas. Concept of ideal gas is only theoretical when pressure is low and temperature is high. They obey the gas law. Such gases are known as Real gases. All gases are Real gases.
Recently Updated Pages
Types of Solutions in Chemistry: Explained Simply

States of Matter Chapter For JEE Main Chemistry

Know The Difference Between Fluid And Liquid

Difference Between Crystalline and Amorphous Solid: Table & Examples

Conduction Explained: Definition, Examples & Science for Students

Balancing of Redox Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

