
At the same temperature and pressure, which one of the following gases will have the highest kinetic energy per mole?
(A) Hydrogen
(B) Oxygen
(C) Methane
(D) All of the above
Answer
220.5k+ views
Hint: Think about the concept of moles and how it will influence the kinetic energy. Also, consider the formula for kinetic energy and what other factors influence it.
Complete step by step solution:
The kinetic energy here is defined as the sum of the kinetic energies of all the individual molecules that are present in a certain volume. We know that this total kinetic energy is defined to be proportional to the average ambient temperature of the substance. The formula to calculate the total kinetic energy is:
\[KE=\dfrac{3}{2}nRT\]
Where, $KE$ is the total kinetic energy,
$n$ is the number of moles of the substance present,
$R$ is the universal gas constant, and
$T$ is the temperature of the substance.
Now, looking at the problem, one mole of each gas is present at the same temperature and pressure.
We know that one mole of any substance contains the same number of molecules; which is equal to the Avogadro’s number $6.023\times {{10}^{23}}$. Thus, the formula will be modified to:
\[KE=\dfrac{3}{2}RT\]
Since the number of molecules is the same, any difference in the properties of one mole of the given substance will only be due to the difference in the molecular and molar masses of the substances. But from the formula, we can see that the total kinetic energy does not depend on the molecular or molar mass at all and only depends on the temperature. It has been given the problem that the temperature is the same for all the substances; so, the total kinetic energy of one mole of all the substances given will be the same.
Hence, the answer to this question is ‘D. All of the above’
Note: Remember that this kinetic energy is not the average energy of each molecule present. To obtain that, you will have to divide the total kinetic energy by the number of molecules that are present.
Complete step by step solution:
The kinetic energy here is defined as the sum of the kinetic energies of all the individual molecules that are present in a certain volume. We know that this total kinetic energy is defined to be proportional to the average ambient temperature of the substance. The formula to calculate the total kinetic energy is:
\[KE=\dfrac{3}{2}nRT\]
Where, $KE$ is the total kinetic energy,
$n$ is the number of moles of the substance present,
$R$ is the universal gas constant, and
$T$ is the temperature of the substance.
Now, looking at the problem, one mole of each gas is present at the same temperature and pressure.
We know that one mole of any substance contains the same number of molecules; which is equal to the Avogadro’s number $6.023\times {{10}^{23}}$. Thus, the formula will be modified to:
\[KE=\dfrac{3}{2}RT\]
Since the number of molecules is the same, any difference in the properties of one mole of the given substance will only be due to the difference in the molecular and molar masses of the substances. But from the formula, we can see that the total kinetic energy does not depend on the molecular or molar mass at all and only depends on the temperature. It has been given the problem that the temperature is the same for all the substances; so, the total kinetic energy of one mole of all the substances given will be the same.
Hence, the answer to this question is ‘D. All of the above’
Note: Remember that this kinetic energy is not the average energy of each molecule present. To obtain that, you will have to divide the total kinetic energy by the number of molecules that are present.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

