
At $45^\circ $ to the magnetic meridian, apparent dip is $30^\circ $. Find true dip.
A) ${\tan ^{ - 1}}\dfrac{1}{{\sqrt 2 }}$
B) ${\tan ^{ - 1}}\sqrt 6 $
C) ${\tan ^{ - 1}}\sqrt 2 $
D) \[{\tan ^{ - 1}}\dfrac{1}{{\sqrt 6 }}\]
Answer
207.3k+ views
Hint: A Dip at a certain area or place is determined by a dip circle. It has a needle which is capable of vertical rotation in an axis which is horizontal. The angle which is made by the needle with the horizontal axis is called apparent dip.
Complete step by step solution:
Find the true dip
\[B_H' = {B_H}\cos \theta = {B_H}\cos 45\];
Put the value of cos45 in the above equation and solve;
\[ \Rightarrow B_H' = \dfrac{{{B_H}}}{{\sqrt 2 }}\];
The apparent dip is related to the vertical magnetic field $Bv$ upon the horizontal magnetic field $B_H'$.
$\tan \delta ' = \dfrac{{Bv}}{{B_H'}}$;
Put the value of $B_H'$in the above equation:
$ \Rightarrow \tan \delta ' = \dfrac{{Bv}}{{\dfrac{{{B_H}}}{{\sqrt 2 }}}}$;
Simplify the equation:
$ \Rightarrow \tan \delta ' = \dfrac{1}{{\sqrt 2 }}\dfrac{{Bv}}{{{B_H}}}$;
$ \Rightarrow \tan \delta ' = \sqrt 2 \tan \delta $; ….$\left( {\delta = \dfrac{{{B_v}}}{{{B_H}}}} \right)$
Here the apparent dip is given by$\delta ' = 30^\circ $:
$ \Rightarrow \tan 30 = \sqrt 2 \tan \delta $;
$ \Rightarrow 0.57 = \sqrt 2 \tan \delta $;
Take the root value to the LHS:
$ \Rightarrow \dfrac{{0.57}}{{\sqrt 2 }} = \tan \delta $;
The value for the true dip is:
${\tan ^{ - 1}}\dfrac{1}{{\sqrt 6 }} = \delta $;
Hence, Option (D) is correct.
The true dip is \[{\tan ^{ - 1}}\dfrac{1}{{\sqrt 6 }}\].
Additional Information:
When a dip circle in a certain plane of scale comes to rest when the needle is in the magnetic meridian and is in the direction of Earth’s magnetic field. The angle which is made by the needle with an axis which is horizontal is called True Dip.
Note: Here we have to establish a relation between true dip and apparent dip but before that make a relation between the horizontal magnetic field$\left( {B_H'} \right)$, Vertical magnetic field $\left( {B_v'} \right)$ and the apparent dip. The true dip is given by $\left( {\delta = \dfrac{{{B_v}}}{{{B_H}}}} \right)$. Solve the equations by using trigonometric properties and find out the true dip.
Complete step by step solution:
Find the true dip
\[B_H' = {B_H}\cos \theta = {B_H}\cos 45\];
Put the value of cos45 in the above equation and solve;
\[ \Rightarrow B_H' = \dfrac{{{B_H}}}{{\sqrt 2 }}\];
The apparent dip is related to the vertical magnetic field $Bv$ upon the horizontal magnetic field $B_H'$.
$\tan \delta ' = \dfrac{{Bv}}{{B_H'}}$;
Put the value of $B_H'$in the above equation:
$ \Rightarrow \tan \delta ' = \dfrac{{Bv}}{{\dfrac{{{B_H}}}{{\sqrt 2 }}}}$;
Simplify the equation:
$ \Rightarrow \tan \delta ' = \dfrac{1}{{\sqrt 2 }}\dfrac{{Bv}}{{{B_H}}}$;
$ \Rightarrow \tan \delta ' = \sqrt 2 \tan \delta $; ….$\left( {\delta = \dfrac{{{B_v}}}{{{B_H}}}} \right)$
Here the apparent dip is given by$\delta ' = 30^\circ $:
$ \Rightarrow \tan 30 = \sqrt 2 \tan \delta $;
$ \Rightarrow 0.57 = \sqrt 2 \tan \delta $;
Take the root value to the LHS:
$ \Rightarrow \dfrac{{0.57}}{{\sqrt 2 }} = \tan \delta $;
The value for the true dip is:
${\tan ^{ - 1}}\dfrac{1}{{\sqrt 6 }} = \delta $;
Hence, Option (D) is correct.
The true dip is \[{\tan ^{ - 1}}\dfrac{1}{{\sqrt 6 }}\].
Additional Information:
When a dip circle in a certain plane of scale comes to rest when the needle is in the magnetic meridian and is in the direction of Earth’s magnetic field. The angle which is made by the needle with an axis which is horizontal is called True Dip.
Note: Here we have to establish a relation between true dip and apparent dip but before that make a relation between the horizontal magnetic field$\left( {B_H'} \right)$, Vertical magnetic field $\left( {B_v'} \right)$ and the apparent dip. The true dip is given by $\left( {\delta = \dfrac{{{B_v}}}{{{B_H}}}} \right)$. Solve the equations by using trigonometric properties and find out the true dip.
Recently Updated Pages
JEE Main 2026 Cutoff Percentile: Rank Vs Percentile

JEE Main 2026 Session 1 Admit Card Release Date and Direct Download Link

JEE Main Exam Pattern 2026 - NTA Paper Pattern, Marking Scheme, Total Marks

JEE Main Slot Booking 2026 NTA Exam Slot Allotment Dates and Shifts

Self Declaration Form for JEE Mains 2026 - Mandatory Details and Filling Process

JEE Main 2026 Registration- Dates, Process, Documents, and Important Details

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Average and RMS Value in Physics: Formula, Comparison & Application

How to Convert a Galvanometer into an Ammeter or Voltmeter

