
At \[{25^ \circ }C\] and one atmospheric pressure, the partial pressures in an equilibrium mixture of \[{N_2}{O_4}\] and \[N{O_2}\] are 0.7 and 0.3 atmosphere, respectively. Calculate the partial pressures of these gases when they are in equilibrium at \[{25^ \circ }C\] and at a total pressure of 10 atmospheres.
Answer
221.7k+ views
Hint: To solve this question we must know how to calculate partial pressure. We should also be able to relate equilibrium constant to partial pressure using the pressure and concentration equilibrium constant.
Complete step by step answer:
\[{K_p}\] is the equilibrium constant calculated from the partial pressures of a reaction equation. It is used to express the relationship between product pressures and reactant pressures. It is a unitless number, although it relates the pressures.
We know that \[{N_2}{O_4}\] dissociates into \[N{O_2}\]
The reaction takes the form:
\[{N_2}{O_4} \to 2N{O_2}\]
The equilibrium pressures give here are:
For \[{N_2}{O_4}\] = 0.7
For \[N{O_2}\]= 0.3
We can now calculate the equilibrium constant from the formula:
\[{K_p} = \dfrac{{{{\left( {{\rm{partial}}\,{\rm{pressure}}\,{\rm{of}}\,{\rm{product}}} \right)}^{coeff}}}}{{{{\left( {{\rm{partial}}\,{\rm{pressure}}\,{\rm{of}}\,{\rm{reactant}}} \right)}^{coeff}}}}\]
On substituting the given values in the formula above we get,
\[{K_p} = \dfrac{{{{\left( {pN{O_2}} \right)}^2}}}{{{{\left( {p{N_2}{O_4}} \right)}^1}}}\]
Or, \[{K_p} = \dfrac{{0.3 \times 0.3}}{{0.7}} = 0.1285\,atm\]
Let us assume the degree of dissociation of \[{N_2}{O_4}\] to be x when the total pressure is 10 atmosphere.
Therefore, the equilibrium concentration is:
For \[{N_2}{O_4}\] = 1-x
For \[N{O_2}\] = 2x
Since, they will dissociate according to their stoichiometric coefficient.
The total number of moles at equilibrium is = 1 - x + 2x = 1 + x
We may now obtain the partial pressures:
\[{p_{{N_2}{O_4}}} = \dfrac{{1 - x}}{{1 + x}} \times 10\] and \[{p_{N{O_2}}} = \dfrac{{2x}}{{1 + x}} \times 10\]
The equilibrium constant now takes the form:
\[{K_p} = 0.1285 = \dfrac{{{{\left( {\dfrac{{2x}}{{1 + x}}} \right)}^2} \times 100}}{{\left( {\dfrac{{1 - x}}{{1 + x}}} \right) \times 10}} = \dfrac{{40{x^2}}}{{1 - {x^2}}}\]
Since x is negligibly small, we can consider \[\left( {1 - {x^2}} \right) \to 1\]
So, \[{x^2} = \dfrac{{0.1285}}{{40}}\]
Or, \[x = 0.0566\]
Substituting the values of x, we will get the partial pressure of each component.
\[{p_{{N_2}{O_4}}} = \dfrac{{1 - x}}{{1 + x}} \times 10 = \dfrac{{1 - 0.0566}}{{1 + 0.0566}} \times 10 = \dfrac{{0.9436 \times 10}}{{1.0566}} = 8.93\,atm\]
And
\[{p_{N{O_2}}} = \dfrac{{2x}}{{1 + x}} \times 10 = \dfrac{{2 \times 0.0566}}{{1 + 0.0566}} \times 10 = 1.07\,atm\]
Hence, the correct answer is 8.93 atm and 1.07 atm.
Note: While calculating pressure equilibrium constant, the partial pressures of gases are used. The partial pressures of pure solids and liquids are not included. It can also be obtained from concentration equilibrium constant.
Complete step by step answer:
\[{K_p}\] is the equilibrium constant calculated from the partial pressures of a reaction equation. It is used to express the relationship between product pressures and reactant pressures. It is a unitless number, although it relates the pressures.
We know that \[{N_2}{O_4}\] dissociates into \[N{O_2}\]
The reaction takes the form:
\[{N_2}{O_4} \to 2N{O_2}\]
The equilibrium pressures give here are:
For \[{N_2}{O_4}\] = 0.7
For \[N{O_2}\]= 0.3
We can now calculate the equilibrium constant from the formula:
\[{K_p} = \dfrac{{{{\left( {{\rm{partial}}\,{\rm{pressure}}\,{\rm{of}}\,{\rm{product}}} \right)}^{coeff}}}}{{{{\left( {{\rm{partial}}\,{\rm{pressure}}\,{\rm{of}}\,{\rm{reactant}}} \right)}^{coeff}}}}\]
On substituting the given values in the formula above we get,
\[{K_p} = \dfrac{{{{\left( {pN{O_2}} \right)}^2}}}{{{{\left( {p{N_2}{O_4}} \right)}^1}}}\]
Or, \[{K_p} = \dfrac{{0.3 \times 0.3}}{{0.7}} = 0.1285\,atm\]
Let us assume the degree of dissociation of \[{N_2}{O_4}\] to be x when the total pressure is 10 atmosphere.
Therefore, the equilibrium concentration is:
For \[{N_2}{O_4}\] = 1-x
For \[N{O_2}\] = 2x
Since, they will dissociate according to their stoichiometric coefficient.
The total number of moles at equilibrium is = 1 - x + 2x = 1 + x
We may now obtain the partial pressures:
\[{p_{{N_2}{O_4}}} = \dfrac{{1 - x}}{{1 + x}} \times 10\] and \[{p_{N{O_2}}} = \dfrac{{2x}}{{1 + x}} \times 10\]
The equilibrium constant now takes the form:
\[{K_p} = 0.1285 = \dfrac{{{{\left( {\dfrac{{2x}}{{1 + x}}} \right)}^2} \times 100}}{{\left( {\dfrac{{1 - x}}{{1 + x}}} \right) \times 10}} = \dfrac{{40{x^2}}}{{1 - {x^2}}}\]
Since x is negligibly small, we can consider \[\left( {1 - {x^2}} \right) \to 1\]
So, \[{x^2} = \dfrac{{0.1285}}{{40}}\]
Or, \[x = 0.0566\]
Substituting the values of x, we will get the partial pressure of each component.
\[{p_{{N_2}{O_4}}} = \dfrac{{1 - x}}{{1 + x}} \times 10 = \dfrac{{1 - 0.0566}}{{1 + 0.0566}} \times 10 = \dfrac{{0.9436 \times 10}}{{1.0566}} = 8.93\,atm\]
And
\[{p_{N{O_2}}} = \dfrac{{2x}}{{1 + x}} \times 10 = \dfrac{{2 \times 0.0566}}{{1 + 0.0566}} \times 10 = 1.07\,atm\]
Hence, the correct answer is 8.93 atm and 1.07 atm.
Note: While calculating pressure equilibrium constant, the partial pressures of gases are used. The partial pressures of pure solids and liquids are not included. It can also be obtained from concentration equilibrium constant.
Recently Updated Pages
JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Apparent Frequency Explained: Formula, Uses & Examples

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

Displacement Current and Maxwell’s Equations Explained

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

