
At ${{10^\circ C}}$, the value of the density of a fixed mass of an ideal gas divided by its pressure is ’${{X}}$’. At ${{110^\circ C}}$ this ratio is:
A) $\dfrac{{10}}{{110}}$
B) $\dfrac{{383}}{{283}}$
C) $\dfrac{{110}}{{10}}$
D) $\dfrac{{283}}{{383}}$
Answer
233.1k+ views
Hint: In this question, first we need to understand the molar form of the ideal gas equation. Then derive the expression of ratio of density and pressure. Then solve it using the inverse proportionality of these terms.
Complete step by step solution:
As we know that the molar form of ideal gas equation is $PV = nRT$, where $P$ is the pressure of the gas, $V$ is the volume of the gas, $R$ is the universal gas constant, $T$ is the absolute temperature, and $n$ is the number of moles of the gas, which can be written as $n = \dfrac{m}{M}$ denoted as ratio of the total mass of the gas $m$ and the molar mass of the gas $M$.
As we know that the ideal gas equation can also be written as,
\[\rho = \dfrac{{PM}}{{RT}}\]
Here, the density of the gas is $\rho $.
Now, we Assume the ratio of density and the pressure of the gas be \[h\],
As we know the ideal gas equation as $\dfrac{\rho }{P} = \dfrac{M}{{RT}}$, the ratio can be expressed as $h = \dfrac{\rho }{P}$ or $h = \dfrac{M}{{RT}}$ so the ratio $h$ is inversely proportional to the absolute temperature $T$, that is, $h\alpha \dfrac{1}{T}$
Considering two ratios ${h_1}\;{\text{and}}\;{h_2}$ and two temperatures ${T_1}\;{\text{and}}\;{T_2}$, we get
\[\dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Putting the given values in the above equation we get
$\dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{\left( {273 + 10} \right)\;{\text{K}}}}{{\left( {273 + 110} \right)\;{\text{K}}}}$,
After simplification we get,
$ \Rightarrow \dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{283}}{{383}}$
Hence option (D) is correct.
Note:It is obvious that physical properties of the gases depend strongly on the conditions. We need a set of standard conditions so that the properties of gases can be properly compared to each other. While putting the value of temperature we must put the temperature in the Kelvin scale not in any other scale.
Complete step by step solution:
As we know that the molar form of ideal gas equation is $PV = nRT$, where $P$ is the pressure of the gas, $V$ is the volume of the gas, $R$ is the universal gas constant, $T$ is the absolute temperature, and $n$ is the number of moles of the gas, which can be written as $n = \dfrac{m}{M}$ denoted as ratio of the total mass of the gas $m$ and the molar mass of the gas $M$.
As we know that the ideal gas equation can also be written as,
\[\rho = \dfrac{{PM}}{{RT}}\]
Here, the density of the gas is $\rho $.
Now, we Assume the ratio of density and the pressure of the gas be \[h\],
As we know the ideal gas equation as $\dfrac{\rho }{P} = \dfrac{M}{{RT}}$, the ratio can be expressed as $h = \dfrac{\rho }{P}$ or $h = \dfrac{M}{{RT}}$ so the ratio $h$ is inversely proportional to the absolute temperature $T$, that is, $h\alpha \dfrac{1}{T}$
Considering two ratios ${h_1}\;{\text{and}}\;{h_2}$ and two temperatures ${T_1}\;{\text{and}}\;{T_2}$, we get
\[\dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Putting the given values in the above equation we get
$\dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{\left( {273 + 10} \right)\;{\text{K}}}}{{\left( {273 + 110} \right)\;{\text{K}}}}$,
After simplification we get,
$ \Rightarrow \dfrac{{{h_2}}}{{{h_1}}} = \dfrac{{283}}{{383}}$
Hence option (D) is correct.
Note:It is obvious that physical properties of the gases depend strongly on the conditions. We need a set of standard conditions so that the properties of gases can be properly compared to each other. While putting the value of temperature we must put the temperature in the Kelvin scale not in any other scale.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

