
At 1 bar and ${\text{298 K}}$ , standard molar enthalpy of formation of which substance is zero?
A)${\text{H}}\left( {\text{g}} \right)$
B)${{\text{H}}^ + }\left( {{\text{aq}}} \right)$
C)${{\text{H}}^ + }\left( {\text{g}} \right)$
D)All correct
Answer
221.1k+ views
Hint:To solve this question, it is required to have knowledge about standard enthalpy of formation of any substance. The standard molar enthalpy of formation of a compound is defined as the enthalpy of formation of 1 mole of pure compound in its stable state at normal room temperature and pressure. At the normal temperature and pressure of the compound given, it is zero.
Complete step by step answer:
As we know that, 1 bar pressure and a temperature of ${\text{298 K}}$ are regarded as normal room temperature and pressure. So, we shall check each option for the correct answer:
In option A, the phase given is gaseous phase. We know that, in the gaseous phase at room temperature, hydrogen is present as ${{\text{H}}_2}$ . It is present as di-hydrogen has and not mono-hydrogen gas $\left( {\text{H}} \right)$. So, the molar enthalpy of formation is not zero.
In option B, the phase given is aqueous phase. We know that any polar compound containing hydrogen simultaneously dissociates into hydrogen ion and its conjugate base. Thus, ${{\text{H}}^ + }\left( {{\text{aq}}} \right)$ is normal at room temperature. So, the standard molar enthalpy of formation is zero.
In option C, the phase given is gaseous. We know that, in gaseous phase hydrogen exists as di-hydrogen gas and not in its ionic form. It is present as ${{\text{H}}_2}$ and not ${{\text{H}}^ + }$ . So, the standard molar enthalpy of formation is not zero.
Option D is not the correct option as well because option A and option C are incorrect.
$\therefore $ The correct option is option B, i.e. ${{\text{H}}^ + }\left( {{\text{aq}}} \right)$ at 1 bar and ${\text{298 K}}$ has a standard molar enthalpy of formation of zero.
Note: If the substance if present in a particular state at that phase, pressure and temperature, it is said that the standard molar enthalpy of formation of that compound is zero. For example, the molar enthalpy of formation of water in gaseous phase at 373 K will be zero. But for water in the liquid phase, the enthalpy of formation will be zero ay 298 K.
Complete step by step answer:
As we know that, 1 bar pressure and a temperature of ${\text{298 K}}$ are regarded as normal room temperature and pressure. So, we shall check each option for the correct answer:
In option A, the phase given is gaseous phase. We know that, in the gaseous phase at room temperature, hydrogen is present as ${{\text{H}}_2}$ . It is present as di-hydrogen has and not mono-hydrogen gas $\left( {\text{H}} \right)$. So, the molar enthalpy of formation is not zero.
In option B, the phase given is aqueous phase. We know that any polar compound containing hydrogen simultaneously dissociates into hydrogen ion and its conjugate base. Thus, ${{\text{H}}^ + }\left( {{\text{aq}}} \right)$ is normal at room temperature. So, the standard molar enthalpy of formation is zero.
In option C, the phase given is gaseous. We know that, in gaseous phase hydrogen exists as di-hydrogen gas and not in its ionic form. It is present as ${{\text{H}}_2}$ and not ${{\text{H}}^ + }$ . So, the standard molar enthalpy of formation is not zero.
Option D is not the correct option as well because option A and option C are incorrect.
$\therefore $ The correct option is option B, i.e. ${{\text{H}}^ + }\left( {{\text{aq}}} \right)$ at 1 bar and ${\text{298 K}}$ has a standard molar enthalpy of formation of zero.
Note: If the substance if present in a particular state at that phase, pressure and temperature, it is said that the standard molar enthalpy of formation of that compound is zero. For example, the molar enthalpy of formation of water in gaseous phase at 373 K will be zero. But for water in the liquid phase, the enthalpy of formation will be zero ay 298 K.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Understanding How a Current Loop Acts as a Magnetic Dipole

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Chemistry Chapter 8 Redox Reactions in Hindi - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Equilibrium in Hindi - 2025-26

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Common Ion Effect: Concept, Applications, and Problem-Solving

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

