Why astronauts see dark sky in space unlike blue sky on earth:
(A) There is no day in space
(B) Light is not scattered in space since there are no particles present
(C) Light is reflected back from the body of the astronaut
(D) Light is absorbed by the space
Answer
Verified
117.3k+ views
Hint: The blue color of the sky is because of the scattering of the sunlight due to particles in the atmosphere. In space there aren’t many tiny particles or there isn’t much dust which can scatter the sunlight. Hence, we don’t see any color. And this absence of light, is seen as darkness.
Complete step by step answer:
Sunlight reaches the earth’s atmosphere and is scattered in all directions by particles present in air. Blue has maximum frequency and lowest wavelength. Lower wavelengths are much more effectively scattered by the particles of that particular size.
There is no atmosphere in space. Sun’s radiations will not penetrate into space. There is no difference between days and nights. Days and nights are dark.
Absence of atmosphere in space will result in no light there. Reflection, absorption and scattering will not take place.
All the above criteria will satisfy option B i.e., light is not scattered in space since there are no particles present.
Note:
We can use the method of elimination here.
Option A talks about “day” in space. Day and Night are due to the rotation of the planet. And we might know that the skies of different planets can be of different colors. Hence this is incorrect
Option C: An astronaut’s suit is white so it scatters/reflects all the colors equally, hence there should not be blackness in the pictures. Instead, everything should be bright.
Option D: Absorption happens due to particles. When we say “space”, we are referring to vacuum. And vacuum cannot absorb light. Hence the statement itself is wrong.
Hence, we see that these options don’t make sense in the scenario. So, we can eliminate them and consider option B as the correct one.
Complete step by step answer:
Sunlight reaches the earth’s atmosphere and is scattered in all directions by particles present in air. Blue has maximum frequency and lowest wavelength. Lower wavelengths are much more effectively scattered by the particles of that particular size.
There is no atmosphere in space. Sun’s radiations will not penetrate into space. There is no difference between days and nights. Days and nights are dark.
Absence of atmosphere in space will result in no light there. Reflection, absorption and scattering will not take place.
All the above criteria will satisfy option B i.e., light is not scattered in space since there are no particles present.
Note:
We can use the method of elimination here.
Option A talks about “day” in space. Day and Night are due to the rotation of the planet. And we might know that the skies of different planets can be of different colors. Hence this is incorrect
Option C: An astronaut’s suit is white so it scatters/reflects all the colors equally, hence there should not be blackness in the pictures. Instead, everything should be bright.
Option D: Absorption happens due to particles. When we say “space”, we are referring to vacuum. And vacuum cannot absorb light. Hence the statement itself is wrong.
Hence, we see that these options don’t make sense in the scenario. So, we can eliminate them and consider option B as the correct one.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids