
Assertion: The molecules of a monoatomic gas has three degrees of freedom.
Reason: The molecules of a diatomic gas has five degrees of freedom.
A. Both Assertion and Reason are true and Reason is the correct explanation of the Assertion.
B. Both Assertion and Reason are true but Reason is not the correction explanation of the Assertion.
C. Assertion is true but the Reason is false.
D. Assertion is false but the Reason is true.
Answer
220.2k+ views
Hint:Molecules of a monoatomic gas can move in any direction in space, but molecules of a diatomic gas can move in any direction in space and they can rotate about the coordinate axes as well. Use this concept to solve the given Assertion-Reason question.
Complete answer:
Consider a monoatomic molecule like Helium $\left( {He} \right)$ .
It can move in all three directions in a space. This means that it has translational motion in every direction in space.
However, it cannot rotate about any axis as it consists of only one atom.
Thus, the degree of freedom for molecules of monoatomic gas is 3.
Hence, the Assertion is true.
Now, consider a diatomic molecule like oxygen $\left( {{O_2}} \right)$ .
Like any monoatomic molecule, it can also move in all three directions in space, thus, having translational motion in every direction in space.
It can also rotate about the coordinate axis, existing in space. The axis should be perpendicular to its own axis though.
This makes a diatomic molecule to have two additional degrees of freedom.
Thus, the degree of freedom for molecules of a diatomic gas is 5.
Hence, the Reason is true as well.
We can clearly see that both the assertion and reason are true but the reason is not the correct explanation for the assertion.
Thus, the correct option is B.
Note: Degree of freedom of a gas molecule is the total number of possible ways a gas molecule moves, rotates, or vibrates in space. At high temperatures, the molecules of a diatomic gas start to vibrate, making its degree of freedom 6.
Complete answer:
Consider a monoatomic molecule like Helium $\left( {He} \right)$ .
It can move in all three directions in a space. This means that it has translational motion in every direction in space.
However, it cannot rotate about any axis as it consists of only one atom.
Thus, the degree of freedom for molecules of monoatomic gas is 3.
Hence, the Assertion is true.
Now, consider a diatomic molecule like oxygen $\left( {{O_2}} \right)$ .
Like any monoatomic molecule, it can also move in all three directions in space, thus, having translational motion in every direction in space.
It can also rotate about the coordinate axis, existing in space. The axis should be perpendicular to its own axis though.
This makes a diatomic molecule to have two additional degrees of freedom.
Thus, the degree of freedom for molecules of a diatomic gas is 5.
Hence, the Reason is true as well.
We can clearly see that both the assertion and reason are true but the reason is not the correct explanation for the assertion.
Thus, the correct option is B.
Note: Degree of freedom of a gas molecule is the total number of possible ways a gas molecule moves, rotates, or vibrates in space. At high temperatures, the molecules of a diatomic gas start to vibrate, making its degree of freedom 6.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Understanding Entropy Changes in Different Processes

Other Pages
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy And Power 2025-26

NCERT Solutions for Class 11 Physics Chapter 6 System Of Particles And Rotational Motion 2025-26

NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding Excess Pressure Inside a Liquid Drop

Understanding Geostationary and Geosynchronous Satellites

