
What is the area of the triangle with vertices $A\left( z \right)$, $B\left( {iz} \right)$, and $C\left( {z + iz} \right)$?
A. $\dfrac{1}{2}{\left| {z + iz} \right|^2}$
B. 1
C. $\dfrac{1}{2}$
D. $\dfrac{1}{2}{\left| z \right|^2}$
Answer
162.3k+ views
Hint: The angle between vertex $A\left( z \right)$ and $B\left( {iz} \right)$ is ${90^ \circ }$. So, the base of the triangle is $\left| z \right|$ and the height of the triangle is $\left| {iz} \right|$. By using the area formula of a triangle, we can calculate the area of the $\Delta ABC$.
Formula Used:
The angle between two complex numbers ${z_1} = {x_1} + i{y_1}$ and ${z_2} = {x_2} + i{y_2}$ is $\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{{y_1}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{x_2}}}}}{{1 + \dfrac{{{y_1}}}{{{x_1}}} \cdot \dfrac{{{y_2}}}{{{x_2}}}}}} \right)$.
The modulus of complex number $z = x + iy$ is $\left| z \right| = \sqrt {{x^2} + {y^2}} $
Area of a triangle$ = \dfrac{1}{2} \times {\rm{base}} \times {\rm{height}}$
Complete step by step solution:
Given that the vertices of the triangle are $A\left( z \right)$, $B\left( {iz} \right)$, and $C\left( {z + iz} \right)$.

Image: Triangle ABC
Now putting $z = x + iy$ in vertices
The vertices are $A\left( {x + iy} \right)$, $B\left( {i\left[ {x + iy} \right]} \right)$, and $C\left( {x + iy + i\left[ {x + iy} \right]} \right)$ or $A\left( {x + iy} \right)$, $B\left( { - y + ix} \right)$, and $C\left( {x - y + iy + ix} \right)$. $\because i^{2}=-1$
Now applying the formula $\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{{y_1}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{x_2}}}}}{{1 + \dfrac{{{y_1}}}{{{x_1}}} \cdot \dfrac{{{y_2}}}{{{x_2}}}}}} \right)$ to calculate the angle between $A\left( {x + iy} \right)$ and $B\left( { - y + ix} \right)$.
The angle between $OA$ and $OB$ is
$\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{y}{x} - \left( { - \dfrac{x}{y}} \right)}}{{1 + \dfrac{y}{x} \cdot \left( { - \dfrac{x}{y}} \right)}}} \right)$
$ \Rightarrow \theta= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{y}{x} - \left( { - \dfrac{x}{y}} \right)}}{{1 - 1}}} \right)$
$ \Rightarrow \theta= {90^ \circ }$ [ Since $\tan {90^ \circ }$ is undefined]
So, the base and height of the triangle are $\left| {OA} \right|$ and $\left| {OB} \right|$.
Apply the modulus formula to calculate $\left| {OA} \right|$.
$\left| {OA} \right| = \left| z \right| = \sqrt {{x^2} + {y^2}} $
Apply the modulus formula to calculate $\left| {OB} \right|$.
$\left| {OB} \right| = \left| {iz} \right| = \sqrt {{{\left( { - y} \right)}^2} + {x^2}} = \sqrt {{x^2} + {y^2}} = \left| z \right|$
Apply the area formula to calculate the area of the triangle
The area of the triangle is
$ = \dfrac{1}{2} \times \left| {OA} \right| \times \left| {OB} \right|$
$ = \dfrac{1}{2} \times \left| z \right| \times \left| z \right|$
$ = \dfrac{1}{2}{\left| z \right|^2}$
Option ‘D’ is correct
Note: If the angle between two complex numbers is $90^{\circ}$, then these two complex numbers are the legs of a triangle. So half of the product of the magnitude of the complex numbers is the area of the triangle that is made by these two complex numbers.
Formula Used:
The angle between two complex numbers ${z_1} = {x_1} + i{y_1}$ and ${z_2} = {x_2} + i{y_2}$ is $\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{{y_1}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{x_2}}}}}{{1 + \dfrac{{{y_1}}}{{{x_1}}} \cdot \dfrac{{{y_2}}}{{{x_2}}}}}} \right)$.
The modulus of complex number $z = x + iy$ is $\left| z \right| = \sqrt {{x^2} + {y^2}} $
Area of a triangle$ = \dfrac{1}{2} \times {\rm{base}} \times {\rm{height}}$
Complete step by step solution:
Given that the vertices of the triangle are $A\left( z \right)$, $B\left( {iz} \right)$, and $C\left( {z + iz} \right)$.

Image: Triangle ABC
Now putting $z = x + iy$ in vertices
The vertices are $A\left( {x + iy} \right)$, $B\left( {i\left[ {x + iy} \right]} \right)$, and $C\left( {x + iy + i\left[ {x + iy} \right]} \right)$ or $A\left( {x + iy} \right)$, $B\left( { - y + ix} \right)$, and $C\left( {x - y + iy + ix} \right)$. $\because i^{2}=-1$
Now applying the formula $\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{{y_1}}}{{{x_1}}} - \dfrac{{{y_2}}}{{{x_2}}}}}{{1 + \dfrac{{{y_1}}}{{{x_1}}} \cdot \dfrac{{{y_2}}}{{{x_2}}}}}} \right)$ to calculate the angle between $A\left( {x + iy} \right)$ and $B\left( { - y + ix} \right)$.
The angle between $OA$ and $OB$ is
$\theta = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{y}{x} - \left( { - \dfrac{x}{y}} \right)}}{{1 + \dfrac{y}{x} \cdot \left( { - \dfrac{x}{y}} \right)}}} \right)$
$ \Rightarrow \theta= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{y}{x} - \left( { - \dfrac{x}{y}} \right)}}{{1 - 1}}} \right)$
$ \Rightarrow \theta= {90^ \circ }$ [ Since $\tan {90^ \circ }$ is undefined]
So, the base and height of the triangle are $\left| {OA} \right|$ and $\left| {OB} \right|$.
Apply the modulus formula to calculate $\left| {OA} \right|$.
$\left| {OA} \right| = \left| z \right| = \sqrt {{x^2} + {y^2}} $
Apply the modulus formula to calculate $\left| {OB} \right|$.
$\left| {OB} \right| = \left| {iz} \right| = \sqrt {{{\left( { - y} \right)}^2} + {x^2}} = \sqrt {{x^2} + {y^2}} = \left| z \right|$
Apply the area formula to calculate the area of the triangle
The area of the triangle is
$ = \dfrac{1}{2} \times \left| {OA} \right| \times \left| {OB} \right|$
$ = \dfrac{1}{2} \times \left| z \right| \times \left| z \right|$
$ = \dfrac{1}{2}{\left| z \right|^2}$
Option ‘D’ is correct
Note: If the angle between two complex numbers is $90^{\circ}$, then these two complex numbers are the legs of a triangle. So half of the product of the magnitude of the complex numbers is the area of the triangle that is made by these two complex numbers.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
