
Area bounded by the curves $y = {e^x}$, $y = {e^{ - x}}$ and the straight line $x = 1$ is (in sq. units)
A. $e + \dfrac{1}{e}$
B. $e + \dfrac{1}{e} + 2$
C. $e + \dfrac{1}{e} - 2$
D. $e - \dfrac{1}{e} + 2$
E. $e - \dfrac{1}{e}$
Answer
163.2k+ views
Hint: In this question, we are given the equation of the curves $y = {e^x}$, $y = {e^{ - x}}$ and the line i.e., $x = 1$. We have to find the area bounded by them. Firsly, plot the graph of the given equations of curve and the line. Then, see the point of intersection of both the curves. To calculate the area, integrate the difference of first curve and the second curve with respect to $dx$ from $0$ to $1$. Solve it further using the integration formula of the exponential function.
Formula Used:Integration of the exponential function –
$\int {{e^x}dx = {e^x}} $
Complete step by step solution:Given that,
Equation of the curves $y = {e^x}$, $y = {e^{ - x}}$ and the straight line $x = 1$
Graph of the given equations is attached below (figure 1);

Figure 1: A graph contains the plot of given equation of the curves and the line
Now, you can see both the curves meet at $x = 0$.
So, we’ll calculate the area of the bounded region by integrating the difference of first curve and the second curve with respect to $dx$ from the line $x = 0$ to $x = 1$
Therefore, the area of the bounded region will be;
$A = \int\limits_0^1 {\left( {{e^x} - {e^{ - x}}} \right)} dx$
Now, as we know that the integration of the function ${e^x}$ is ${e^x}$
On integrating the function, we get $A = \left[ {{e^x} + {e^{ - x}}} \right]_0^1$
On resolving the limits, we get $A = {e^1} + {e^{ - 1}} - {e^0} - {e^{ - 0}}$
$A = e + \dfrac{1}{e} - 2$ sq. units
Option ‘C’ is correct
Note: Different methods are used to determine the area under the curve, with the antiderivative method being the most prevalent. The area under the curve can be calculated by knowing the curve's equation, borders, and the axis surrounding the curve. There exist formulas for obtaining the areas of regular shapes such as squares, rectangles, quadrilaterals, polygons, and circles, but no formula for finding the area under a curve. The integration procedure aids in solving the equation and determining the required area. Antiderivative methods are highly useful for determining the areas of irregular planar surfaces.
Formula Used:Integration of the exponential function –
$\int {{e^x}dx = {e^x}} $
Complete step by step solution:Given that,
Equation of the curves $y = {e^x}$, $y = {e^{ - x}}$ and the straight line $x = 1$
Graph of the given equations is attached below (figure 1);

Figure 1: A graph contains the plot of given equation of the curves and the line
Now, you can see both the curves meet at $x = 0$.
So, we’ll calculate the area of the bounded region by integrating the difference of first curve and the second curve with respect to $dx$ from the line $x = 0$ to $x = 1$
Therefore, the area of the bounded region will be;
$A = \int\limits_0^1 {\left( {{e^x} - {e^{ - x}}} \right)} dx$
Now, as we know that the integration of the function ${e^x}$ is ${e^x}$
On integrating the function, we get $A = \left[ {{e^x} + {e^{ - x}}} \right]_0^1$
On resolving the limits, we get $A = {e^1} + {e^{ - 1}} - {e^0} - {e^{ - 0}}$
$A = e + \dfrac{1}{e} - 2$ sq. units
Option ‘C’ is correct
Note: Different methods are used to determine the area under the curve, with the antiderivative method being the most prevalent. The area under the curve can be calculated by knowing the curve's equation, borders, and the axis surrounding the curve. There exist formulas for obtaining the areas of regular shapes such as squares, rectangles, quadrilaterals, polygons, and circles, but no formula for finding the area under a curve. The integration procedure aids in solving the equation and determining the required area. Antiderivative methods are highly useful for determining the areas of irregular planar surfaces.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
