
An uncharged particle is moving with a velocity of in a non-uniform magnetic field as shown. Velocity would be

(A) Maximum at and
(B) Minimum at and
(C) Maximum at
(D) Same at all points
Answer
175.5k+ views
Hint We are given that the particle is uncharged and also are given with this diagram and we are told that the particle is moving in a magnetic field. Thus, we will take into account the Lorentz force formula which will connect all the given parameters to the required one.
Formula used
Where, is the Lorentz force vector, is the charge on the particle, is the velocity of the particle and is the magnetic field in which the particle is moving.
Complete Step By Step Solution
According to Newton’s laws, we know that for a particle to move, there has to be some external force acting on it. Also, we know that for a particle to move in a magnetic field, there has to be a charge on it.
Now,
In this case, the particle is uncharged.
Thus from the Lorentz force formula
We can say,
Thus, there is no Lorentz force acting on the particle at any point in the trajectory.
Also, in accordance to the question, there is no external force acting on the particle.
Thus =, the velocity of the particle is constant throughout the flow in the given trajectory.
Thus, the answer is (D).
Note The question was about the change in velocity vector of the particle in the three points which we found was the same throughout. But if the question was about the magnetic field change, then the answer would not be the same.
Formula used
Where,
Complete Step By Step Solution
According to Newton’s laws, we know that for a particle to move, there has to be some external force acting on it. Also, we know that for a particle to move in a magnetic field, there has to be a charge on it.
Now,
In this case, the particle is uncharged.
Thus from the Lorentz force formula
We can say,
Thus, there is no Lorentz force acting on the particle at any point in the trajectory.
Also, in accordance to the question, there is no external force acting on the particle.
Thus =, the velocity of the particle
Thus, the answer is (D).
Note The question was about the change in velocity vector of the particle in the three points which we found was the same throughout. But if the question was about the magnetic field change, then the answer would not be the same.
Recently Updated Pages
JEE Main 2025-26 Atoms and Nuclei Mock Test: Free Practice Online

JEE Main 2025-26: Dual Nature of Matter and Radiation Mock Test

JEE Main 2025-26 Electronic Devices Mock Test – Free Practice

JEE Main Mock Test 2025-26: Experimental Skills Chapter Online Practice

JEE Main 2025-26 Current Electricity Mock Test: Free Practice Online

JEE Main 2025-26 Rotational Motion Mock Test – Free Practice Online

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Electric field due to uniformly charged sphere class 12 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

Wheatstone Bridge for JEE Main Physics 2025
