
An observer is moving with half the speed of light towards a stationary microwave source emitting waves frequency \[10GHz\]. What is the frequency of the microwave measured by the observer? (speed of the light$ = 3 \times {10^8}m{s^{ - 1}}$)
A) $17.3GHz$
B) $15.3GHz$
C) $10.1GHz$
D) $12.1GHz$
Answer
521.8k+ views
Hint: If the source of the wave is moving with respect to the observer then there is a change in the frequency. This can be determined using Doppler’s effect. Doppler’s effect is defined as the change in the frequency of the waves if the source and the observer are moving with respect to each other. The Doppler’s effect can be observed in any kind of waves like sound or light etc.
Complete step by step solution:
If the observer and the object is moving, then as per Doppler’s effect, the frequency of the microwave is given by the formula:
$ \Rightarrow f = {f_0}\sqrt {\dfrac{{c + v}}{{c - v}}} $---(i)
Where $f$is the change in frequency
${f_0}$is the original frequency
$c$is the speed of the light
$v$is the velocity of the observer
It is given that the speed of the observer is half the speed of light. If the speed of the microwave is ‘c’, then the speed of the observer will be
\[ \Rightarrow v = \dfrac{c}{2}\]
Also given that the original frequency of the waves is ${f_0} = 10GHz$
Substituting the given values in equation (i),
$ \Rightarrow f = 10\sqrt {\dfrac{{c + \dfrac{c}{2}}}{{c - \dfrac{c}{2}}}} $
$\Rightarrow f = 10\sqrt {\dfrac{{\dfrac{{2c + c}}{2}}}{{\dfrac{{2c - c}}{2}}}} $
$\Rightarrow f = 10\sqrt {\dfrac{{\dfrac{{3c}}{2}}}{{\dfrac{c}{2}}}} $
\[\Rightarrow f = 10\sqrt {\dfrac{{3c}}{2} \times \dfrac{2}{c}} \]
$\Rightarrow f = 10\sqrt 3 $
$\Rightarrow f = 10 \times 1.73$
$\Rightarrow f = 17.3GHz$
The frequency of the microwave measured by the observer will be $ = 17.3GHz$.
Option A is the right answer.
Note: It is important to note that in case of Doppler’s effect the actual frequency of the waves does not change. When a light source emits the light and the waves move towards the observer then the waves seem compressed to the observer. On the other hand, when the light waves move away from the observer then they get stretched out.
Complete step by step solution:
If the observer and the object is moving, then as per Doppler’s effect, the frequency of the microwave is given by the formula:
$ \Rightarrow f = {f_0}\sqrt {\dfrac{{c + v}}{{c - v}}} $---(i)
Where $f$is the change in frequency
${f_0}$is the original frequency
$c$is the speed of the light
$v$is the velocity of the observer
It is given that the speed of the observer is half the speed of light. If the speed of the microwave is ‘c’, then the speed of the observer will be
\[ \Rightarrow v = \dfrac{c}{2}\]
Also given that the original frequency of the waves is ${f_0} = 10GHz$
Substituting the given values in equation (i),
$ \Rightarrow f = 10\sqrt {\dfrac{{c + \dfrac{c}{2}}}{{c - \dfrac{c}{2}}}} $
$\Rightarrow f = 10\sqrt {\dfrac{{\dfrac{{2c + c}}{2}}}{{\dfrac{{2c - c}}{2}}}} $
$\Rightarrow f = 10\sqrt {\dfrac{{\dfrac{{3c}}{2}}}{{\dfrac{c}{2}}}} $
\[\Rightarrow f = 10\sqrt {\dfrac{{3c}}{2} \times \dfrac{2}{c}} \]
$\Rightarrow f = 10\sqrt 3 $
$\Rightarrow f = 10 \times 1.73$
$\Rightarrow f = 17.3GHz$
The frequency of the microwave measured by the observer will be $ = 17.3GHz$.
Option A is the right answer.
Note: It is important to note that in case of Doppler’s effect the actual frequency of the waves does not change. When a light source emits the light and the waves move towards the observer then the waves seem compressed to the observer. On the other hand, when the light waves move away from the observer then they get stretched out.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

