
An observer is moving with half the speed of light towards a stationary microwave source emitting waves frequency \[10GHz\]. What is the frequency of the microwave measured by the observer? (speed of the light$ = 3 \times {10^8}m{s^{ - 1}}$)
A) $17.3GHz$
B) $15.3GHz$
C) $10.1GHz$
D) $12.1GHz$
Answer
503.2k+ views
Hint: If the source of the wave is moving with respect to the observer then there is a change in the frequency. This can be determined using Doppler’s effect. Doppler’s effect is defined as the change in the frequency of the waves if the source and the observer are moving with respect to each other. The Doppler’s effect can be observed in any kind of waves like sound or light etc.
Complete step by step solution:
If the observer and the object is moving, then as per Doppler’s effect, the frequency of the microwave is given by the formula:
$ \Rightarrow f = {f_0}\sqrt {\dfrac{{c + v}}{{c - v}}} $---(i)
Where $f$is the change in frequency
${f_0}$is the original frequency
$c$is the speed of the light
$v$is the velocity of the observer
It is given that the speed of the observer is half the speed of light. If the speed of the microwave is ‘c’, then the speed of the observer will be
\[ \Rightarrow v = \dfrac{c}{2}\]
Also given that the original frequency of the waves is ${f_0} = 10GHz$
Substituting the given values in equation (i),
$ \Rightarrow f = 10\sqrt {\dfrac{{c + \dfrac{c}{2}}}{{c - \dfrac{c}{2}}}} $
$\Rightarrow f = 10\sqrt {\dfrac{{\dfrac{{2c + c}}{2}}}{{\dfrac{{2c - c}}{2}}}} $
$\Rightarrow f = 10\sqrt {\dfrac{{\dfrac{{3c}}{2}}}{{\dfrac{c}{2}}}} $
\[\Rightarrow f = 10\sqrt {\dfrac{{3c}}{2} \times \dfrac{2}{c}} \]
$\Rightarrow f = 10\sqrt 3 $
$\Rightarrow f = 10 \times 1.73$
$\Rightarrow f = 17.3GHz$
The frequency of the microwave measured by the observer will be $ = 17.3GHz$.
Option A is the right answer.
Note: It is important to note that in case of Doppler’s effect the actual frequency of the waves does not change. When a light source emits the light and the waves move towards the observer then the waves seem compressed to the observer. On the other hand, when the light waves move away from the observer then they get stretched out.
Complete step by step solution:
If the observer and the object is moving, then as per Doppler’s effect, the frequency of the microwave is given by the formula:
$ \Rightarrow f = {f_0}\sqrt {\dfrac{{c + v}}{{c - v}}} $---(i)
Where $f$is the change in frequency
${f_0}$is the original frequency
$c$is the speed of the light
$v$is the velocity of the observer
It is given that the speed of the observer is half the speed of light. If the speed of the microwave is ‘c’, then the speed of the observer will be
\[ \Rightarrow v = \dfrac{c}{2}\]
Also given that the original frequency of the waves is ${f_0} = 10GHz$
Substituting the given values in equation (i),
$ \Rightarrow f = 10\sqrt {\dfrac{{c + \dfrac{c}{2}}}{{c - \dfrac{c}{2}}}} $
$\Rightarrow f = 10\sqrt {\dfrac{{\dfrac{{2c + c}}{2}}}{{\dfrac{{2c - c}}{2}}}} $
$\Rightarrow f = 10\sqrt {\dfrac{{\dfrac{{3c}}{2}}}{{\dfrac{c}{2}}}} $
\[\Rightarrow f = 10\sqrt {\dfrac{{3c}}{2} \times \dfrac{2}{c}} \]
$\Rightarrow f = 10\sqrt 3 $
$\Rightarrow f = 10 \times 1.73$
$\Rightarrow f = 17.3GHz$
The frequency of the microwave measured by the observer will be $ = 17.3GHz$.
Option A is the right answer.
Note: It is important to note that in case of Doppler’s effect the actual frequency of the waves does not change. When a light source emits the light and the waves move towards the observer then the waves seem compressed to the observer. On the other hand, when the light waves move away from the observer then they get stretched out.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Collision: Meaning, Types & Examples in Physics

