
An object of mass 16 $kg$ is moving with an acceleration of 3 $m/{s^2}$. Calculate the applied force. If the same force is applied on an object of mass 24 $kg$, how much will be the acceleration?
Answer
137.7k+ views
Hint: In the first case, the value of the mass of an object and value of the acceleration of an object is given and applied force is asked. Use Newton’s second law of motion i.e., ${\text{F = ma}}$ and then substitute the given values in the formula and evaluate the value of the applied force. Now in the second case, the value of applied force in both the cases are the same. Value of mass of an object is given. Again using Newton’s second law of motion evaluate the value of acceleration of an object.
Complete step by step solution:
Given: Mass of an object, ${{\text{m}}_{\text{1}}}{\text{ = 16 kg}}$
Acceleration of the object, ${{\text{a}}_{\text{1}}}{\text{ = 3 m/}}{{\text{s}}^{\text{2}}}$
To find: Applied force
Using Newton’s second law of motion
${\text{F = ma}}$
Where F = Applied force
M = Mass of the object
And a = Acceleration of the object
Now substituting the given values in above formula, we get
${{\text{F}}_{\text{1}}}{\text{ = }}{{\text{m}}_{\text{1}}}{{\text{a}}_{\text{1}}}{\text{ = 16 \times 3 = 48 N}}$
Given that applied force on first object is same as that of the applied force on the another object
$\therefore {\text{ }}{{\text{F}}_{\text{1}}}{\text{ = }}{{\text{F}}_{\text{2}}}{\text{ = 48 N}}$
Mass of another object, ${{\text{m}}_{\text{2}}}{\text{ = 24 kg}}$
Acceleration of the object =?
Again using Newton’s second law of motion
${\text{F = ma}}$
Where F = Applied force
M = Mass of the object
And a = Acceleration of the object
Now substituting the given values in above formula, we get
$
{F_2}{\text{ = }}{{\text{m}}_{\text{2}}}{{\text{a}}_{\text{2}}} \\
\Rightarrow {{\text{a}}_{\text{2}}}{\text{ = }}\dfrac{{{{\text{F}}_{\text{2}}}}}{{{{\text{m}}_{\text{2}}}}}{\text{ }} = {\text{ }}\dfrac{{48}}{{24}}{\text{ = 3 m/}}{{\text{s}}^2} \\
$
Therefore, applied force on an object is 48 N and acceleration of another object is 3 $m/{s^2}$.
Note: The second law states that the rate of change of momentum of a body is directly proportional to the force applied, and this change in momentum takes place in the direction of the applied force.
\[{\text{F = }}\dfrac{{{\text{dp}}}}{{{\text{dt}}}}{\text{ = }}\dfrac{{{\text{d(mv)}}}}{{{\text{dt}}}}{\text{ = m}}\dfrac{{{\text{dv}}}}{{{\text{dt}}}}{\text{ = ma}}\]
Complete step by step solution:
Given: Mass of an object, ${{\text{m}}_{\text{1}}}{\text{ = 16 kg}}$
Acceleration of the object, ${{\text{a}}_{\text{1}}}{\text{ = 3 m/}}{{\text{s}}^{\text{2}}}$
To find: Applied force
Using Newton’s second law of motion
${\text{F = ma}}$
Where F = Applied force
M = Mass of the object
And a = Acceleration of the object
Now substituting the given values in above formula, we get
${{\text{F}}_{\text{1}}}{\text{ = }}{{\text{m}}_{\text{1}}}{{\text{a}}_{\text{1}}}{\text{ = 16 \times 3 = 48 N}}$
Given that applied force on first object is same as that of the applied force on the another object
$\therefore {\text{ }}{{\text{F}}_{\text{1}}}{\text{ = }}{{\text{F}}_{\text{2}}}{\text{ = 48 N}}$
Mass of another object, ${{\text{m}}_{\text{2}}}{\text{ = 24 kg}}$
Acceleration of the object =?
Again using Newton’s second law of motion
${\text{F = ma}}$
Where F = Applied force
M = Mass of the object
And a = Acceleration of the object
Now substituting the given values in above formula, we get
$
{F_2}{\text{ = }}{{\text{m}}_{\text{2}}}{{\text{a}}_{\text{2}}} \\
\Rightarrow {{\text{a}}_{\text{2}}}{\text{ = }}\dfrac{{{{\text{F}}_{\text{2}}}}}{{{{\text{m}}_{\text{2}}}}}{\text{ }} = {\text{ }}\dfrac{{48}}{{24}}{\text{ = 3 m/}}{{\text{s}}^2} \\
$
Therefore, applied force on an object is 48 N and acceleration of another object is 3 $m/{s^2}$.
Note: The second law states that the rate of change of momentum of a body is directly proportional to the force applied, and this change in momentum takes place in the direction of the applied force.
\[{\text{F = }}\dfrac{{{\text{dp}}}}{{{\text{dt}}}}{\text{ = }}\dfrac{{{\text{d(mv)}}}}{{{\text{dt}}}}{\text{ = m}}\dfrac{{{\text{dv}}}}{{{\text{dt}}}}{\text{ = ma}}\]
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
