Answer

Verified

35.1k+ views

**Hint:**Since no external force is acting on the system, the y coordinate for the centre of mass of the system will remain the same before and after the explosion i.e. it will be 0. You have to use the formula for centre of mass considering only the y coordinates of the two pieces and equate it to 0 (as it will remain the same) and solve the equation to get the final answer.

**Formula Used:**

Centre of mass for a 2 body system (Y coordinate) is given by $\dfrac{{{m_1}{y_1} + {m_2}{y_2}}}{{{m_1} + {m_2}}}$ where, ${m_1},{m_2}$ are the mass of body 1 and body 2 respectively and ${y_1},{y_2}$ are the y coordinates of body 1 and body 2 respectively.

**Complete Step by Step Solution:**

Initially, the particle is moving along the x axis, therefore its y coordinate is 0. Since this is a single particle system, its centre of mass will be at the same location as of the particle itself. Therefore, its centre of mass will have y coordinate equal to 0.

Then the particle explodes and splits into 2 pieces. No external force is acting on the particle here. Therefore, the centre of mass will lie at the same point as before the explosion. That is, the y coordinate for the centre of mass after the explosion is 0.

Also, we can find the centre of mass after an explosion using its formula. We have, Centre of mass for a 2 body system (Y coordinate) is given by $\dfrac{{{m_1}{y_1} + {m_2}{y_2}}}{{{m_1} + {m_2}}}$ where, ${m_1},{m_2}$ are the mass of body 1 and body 2 respectively and ${y_1},{y_2}$ are the y coordinates of body 1 and body 2 respectively.

As we have calculated that this will be equal to 0, we will equate the above formula to 0 and solve after putting the values.

$\dfrac{{{m_1}{y_1} + {m_2}{y_2}}}{{{m_1} + {m_2}}} = 0$

$\Rightarrow$ \[\dfrac{{\dfrac{m}{4} \times 15 + \dfrac{{3m}}{4}{y_2}}}{{{m_1} + {m_2}}} = 0\] (position of first particle after explosion is given)

$\Rightarrow$ \[\dfrac{{15m}}{4} + \dfrac{{3m}}{4}{y_2} = 0\]

$\Rightarrow$ \[{y_2} = - \dfrac{{15m}}{4} \times \dfrac{4}{{3m}} = - \dfrac{{15}}{4} \times \dfrac{4}{3}\] (like terms get cancelled out)

We get \[{y_2} = - 5cm\]

This will be the position of the second particle.

**Option (A) is the correct answer.**

**Note:**when no external force acts on a system, then the centre of mass of the system remains the same even if the system has transformed into more pieces than before, like in this case. In this question, when the explosion happened, the particles were spread in such a way, respective to their masses, that the centre of mass was the same as before. This is exactly what happens in every such case.

Recently Updated Pages

To get a maximum current in an external resistance class 1 physics JEE_Main

f a body travels with constant acceleration which of class 1 physics JEE_Main

A hollow sphere of mass M and radius R is rotating class 1 physics JEE_Main

If the beams of electrons and protons move parallel class 1 physics JEE_Main

Two radioactive nuclei P and Q in a given sample decay class 1 physics JEE_Main

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Other Pages

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Oxidation state of S in H2S2O8 is A 6 B 7 C +8 D 0 class 12 chemistry JEE_Main

Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main

A closed organ pipe and an open organ pipe are tuned class 11 physics JEE_Main

The strongest oxidising agent among the following is class 11 chemistry JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main