
An inductance coil of ${{1H}}$ and a condenser of capacity ${{1pF}}$ produce resonance. The resonant frequency will be:
A) $\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{\pi }}}{{Hz}}$
B) ${{27\pi \times 1}}{{{6}}^{{6}}}{{Hz}}$
C) $\dfrac{{{{2\pi }}}}{{{{1}}{{{0}}^{{6}}}}}{{Hz}}$
D) $\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{Hz}}$
Answer
219.3k+ views
Hint: We know that the formula of resonant frequency, by substituting the values, we can solve the above question. Electrical resonance occurs in an AC circuit when the two reactances which are opposite and equal cancel each other and the point on the graph at which this happens is where the two reactance curves cross each other.
Formula used:
F(resonant frequency) = $\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$
Where L is inductance & C is capacitance
& ${{1}}{{pF = 1}}{{{0}}^{{{ - 12}}}}{{Farad}}$
Complete step by step answer:
Given that, the inductance of a coil is ${{1}}{{{H}}_{{q}}}$ and the capacity of a condenser is equal to ${{C = 1pF}}$ , now converting the capacitance in farad we get
${{C = 1pF}}{{ = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$ So, ${{C = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$
Now,
Putting the value of L&C in formula ${{f = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$ we get
${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1 \times 1}}{{{0}}^{{{ - 12}}}}} }}$
$ \Rightarrow {{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1}}{{{0}}^{{{ - 12}}}}} }}$
$\therefore {{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$
So, the correct option is (D) i.e. ${{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$.
Note: Resonance is an important concept in oscillatory motion. The resonant frequency is the characteristic frequency of a body or a system that reaches the maximum degree of oscillations.
In an electrical system, the resonant frequency is defined as the frequency at which the transfer function reaches its maximum value. This for a given input, the maximum output can be obtained. It has been proud that the resonance is obtained when the capacitive impedance and the inductive impedance values are equal. In this article, we will discuss the resonant frequency formula with examples. The resonant circuits are used to create a particular frequency or to select a particular frequency form a complex circuit. So, the resonant frequency ${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}.$
Formula used:
F(resonant frequency) = $\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$
Where L is inductance & C is capacitance
& ${{1}}{{pF = 1}}{{{0}}^{{{ - 12}}}}{{Farad}}$
Complete step by step answer:
Given that, the inductance of a coil is ${{1}}{{{H}}_{{q}}}$ and the capacity of a condenser is equal to ${{C = 1pF}}$ , now converting the capacitance in farad we get
${{C = 1pF}}{{ = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$ So, ${{C = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$
Now,
Putting the value of L&C in formula ${{f = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$ we get
${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1 \times 1}}{{{0}}^{{{ - 12}}}}} }}$
$ \Rightarrow {{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1}}{{{0}}^{{{ - 12}}}}} }}$
$\therefore {{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$
So, the correct option is (D) i.e. ${{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$.
Note: Resonance is an important concept in oscillatory motion. The resonant frequency is the characteristic frequency of a body or a system that reaches the maximum degree of oscillations.
In an electrical system, the resonant frequency is defined as the frequency at which the transfer function reaches its maximum value. This for a given input, the maximum output can be obtained. It has been proud that the resonance is obtained when the capacitive impedance and the inductive impedance values are equal. In this article, we will discuss the resonant frequency formula with examples. The resonant circuits are used to create a particular frequency or to select a particular frequency form a complex circuit. So, the resonant frequency ${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}.$
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

