
An inductance coil of ${{1H}}$ and a condenser of capacity ${{1pF}}$ produce resonance. The resonant frequency will be:
A) $\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{\pi }}}{{Hz}}$
B) ${{27\pi \times 1}}{{{6}}^{{6}}}{{Hz}}$
C) $\dfrac{{{{2\pi }}}}{{{{1}}{{{0}}^{{6}}}}}{{Hz}}$
D) $\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{Hz}}$
Answer
162k+ views
Hint: We know that the formula of resonant frequency, by substituting the values, we can solve the above question. Electrical resonance occurs in an AC circuit when the two reactances which are opposite and equal cancel each other and the point on the graph at which this happens is where the two reactance curves cross each other.
Formula used:
F(resonant frequency) = $\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$
Where L is inductance & C is capacitance
& ${{1}}{{pF = 1}}{{{0}}^{{{ - 12}}}}{{Farad}}$
Complete step by step answer:
Given that, the inductance of a coil is ${{1}}{{{H}}_{{q}}}$ and the capacity of a condenser is equal to ${{C = 1pF}}$ , now converting the capacitance in farad we get
${{C = 1pF}}{{ = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$ So, ${{C = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$
Now,
Putting the value of L&C in formula ${{f = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$ we get
${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1 \times 1}}{{{0}}^{{{ - 12}}}}} }}$
$ \Rightarrow {{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1}}{{{0}}^{{{ - 12}}}}} }}$
$\therefore {{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$
So, the correct option is (D) i.e. ${{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$.
Note: Resonance is an important concept in oscillatory motion. The resonant frequency is the characteristic frequency of a body or a system that reaches the maximum degree of oscillations.
In an electrical system, the resonant frequency is defined as the frequency at which the transfer function reaches its maximum value. This for a given input, the maximum output can be obtained. It has been proud that the resonance is obtained when the capacitive impedance and the inductive impedance values are equal. In this article, we will discuss the resonant frequency formula with examples. The resonant circuits are used to create a particular frequency or to select a particular frequency form a complex circuit. So, the resonant frequency ${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}.$
Formula used:
F(resonant frequency) = $\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$
Where L is inductance & C is capacitance
& ${{1}}{{pF = 1}}{{{0}}^{{{ - 12}}}}{{Farad}}$
Complete step by step answer:
Given that, the inductance of a coil is ${{1}}{{{H}}_{{q}}}$ and the capacity of a condenser is equal to ${{C = 1pF}}$ , now converting the capacitance in farad we get
${{C = 1pF}}{{ = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$ So, ${{C = }}{{1}}{{{0}}^{{{ - 12}}}}{{F}}$
Now,
Putting the value of L&C in formula ${{f = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}$ we get
${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1 \times 1}}{{{0}}^{{{ - 12}}}}} }}$
$ \Rightarrow {{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{1}}{{{0}}^{{{ - 12}}}}} }}$
$\therefore {{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$
So, the correct option is (D) i.e. ${{f}}{{ = }}\dfrac{{{{1}}{{{0}}^{{6}}}}}{{{{2\pi }}}}{{{H}}_{{z}}}$.
Note: Resonance is an important concept in oscillatory motion. The resonant frequency is the characteristic frequency of a body or a system that reaches the maximum degree of oscillations.
In an electrical system, the resonant frequency is defined as the frequency at which the transfer function reaches its maximum value. This for a given input, the maximum output can be obtained. It has been proud that the resonance is obtained when the capacitive impedance and the inductive impedance values are equal. In this article, we will discuss the resonant frequency formula with examples. The resonant circuits are used to create a particular frequency or to select a particular frequency form a complex circuit. So, the resonant frequency ${{f}}{{ = }}\dfrac{{{1}}}{{{{2\pi }}\sqrt {{{LC}}} }}.$
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Wheatstone Bridge for JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE
