
An ideal battery of $4V$ and resistance $R$ are connected in series in the primary circuit of a potentiometer of length $1m$ and resistance $5\Omega $. The value of $R$, to given a potential difference of $5mV$ across $10cm$ of potentiometer wire is:
A) $490\Omega $
(B) $480\Omega $
(C) $395\Omega $
(D) $495\Omega $
Answer
232.8k+ views
Hint: Recall the potential gradient, its definition and formula. The resistance for $1m$ length potentiometer is given, so find the resistance of the potentiometer wire then find out the value of the resistance connected in series with the battery.
Formula Used:
$i = \dfrac{V}{R}$
Where $i$ is the current flowing
$V$ is the voltage difference
$R$ is the resistance
Complete step by step answer:
In the question we have given the voltage of the ideal battery, that is
$V = 4V$
And the battery and a resistance is connected in the series, so the equivalent resistance become
${R_{eq}} = R + 5$
So, the current flowing, $i = \dfrac{V}{{R + 5}}$
$ \Rightarrow i = \dfrac{4}{{R + 5}}A$
Now, in the question we have given the resistance $5\Omega $, for $1m$ length of potentiometer
So, for $10cm$ length of potentiometer, the resistance becomes
$R' = 5 \times \dfrac{{10}}{{100}}$
$ \Rightarrow R' = 0.5\Omega $
We have also given the potential difference across $10cm$ of potentiometer wire, that is
$\Delta V' = 5mV$
Now, we have to convert it into the SI unit that is volt.
$ \Rightarrow \Delta V' = 5 \times {10^{ - 3}}V$
Now apply the formula for ohm's law,
$\Delta V' = iR'$
On putting the values of all the available variables, we get
$ \Rightarrow 5 \times {10^{ - 3}} = \left( {\dfrac{4}{{R + 5}}} \right) \times 0.5$
$ \Rightarrow \dfrac{4}{{R + 5}} = 10$
On further solving,
$ \Rightarrow R + 5 = 400$
Finally we get the value of the R,
$R = 395\Omega $
Thus, the value of resistance $R$ connected in series is given by $395\Omega $.
Therefore, the correct answer is option (C).
Note: Potential gradient is defined as the change in potential difference with respect to the per unit length. The potentiometer is a three terminal variable resistor in which the resistance is manually varied to control the flow of electric current. It acts as an adjustable voltage divider. The potentiometer problems are similar to Wheatstone bridge problems. Balancing the resistance is what you do to find the desired quantity.
Formula Used:
$i = \dfrac{V}{R}$
Where $i$ is the current flowing
$V$ is the voltage difference
$R$ is the resistance
Complete step by step answer:
In the question we have given the voltage of the ideal battery, that is
$V = 4V$
And the battery and a resistance is connected in the series, so the equivalent resistance become
${R_{eq}} = R + 5$
So, the current flowing, $i = \dfrac{V}{{R + 5}}$
$ \Rightarrow i = \dfrac{4}{{R + 5}}A$
Now, in the question we have given the resistance $5\Omega $, for $1m$ length of potentiometer
So, for $10cm$ length of potentiometer, the resistance becomes
$R' = 5 \times \dfrac{{10}}{{100}}$
$ \Rightarrow R' = 0.5\Omega $
We have also given the potential difference across $10cm$ of potentiometer wire, that is
$\Delta V' = 5mV$
Now, we have to convert it into the SI unit that is volt.
$ \Rightarrow \Delta V' = 5 \times {10^{ - 3}}V$
Now apply the formula for ohm's law,
$\Delta V' = iR'$
On putting the values of all the available variables, we get
$ \Rightarrow 5 \times {10^{ - 3}} = \left( {\dfrac{4}{{R + 5}}} \right) \times 0.5$
$ \Rightarrow \dfrac{4}{{R + 5}} = 10$
On further solving,
$ \Rightarrow R + 5 = 400$
Finally we get the value of the R,
$R = 395\Omega $
Thus, the value of resistance $R$ connected in series is given by $395\Omega $.
Therefore, the correct answer is option (C).
Note: Potential gradient is defined as the change in potential difference with respect to the per unit length. The potentiometer is a three terminal variable resistor in which the resistance is manually varied to control the flow of electric current. It acts as an adjustable voltage divider. The potentiometer problems are similar to Wheatstone bridge problems. Balancing the resistance is what you do to find the desired quantity.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

