
An experiment is performed to determine the \[I - V\] characteristic of a Zener diode, which has a protective resistance of $R = 100\Omega $, and a maximum power of dissipation rating of $1{\text{ }}W$. The minimum voltage range of the DC source in the circuit is:
A) $0 - 24V$
B) $0 - 5V$
C) $0 - 12V$
D) $0 - 8V$
Answer
162k+ views
Hint: By applying Kirchhoff’s Voltage law and using the Power formula, substitute the given values in these relations and to find the minimum voltage range DC source. Electric Power: The electric power in the circuit is the rate at which energy is absorbed or produced within a circuit. It is the product of voltage times current.
Formula Used:
We will be using the formula of Kirchhoff’s voltage law and Power $P = VI$.
Complete step by step solution:
The circuit diode for a Zener diode with a protective resistance is $R = 100\Omega $.
According to Kirchhoff’s voltage law, the voltage around the loop equals the sum of every voltage drop in the same loop for any closed network and also equals zero.
$V = iR + {V_D}$
Given: The value of the protective resistance is given as $R = 100\Omega $ the power dissipated is $1W$${V_D} = V - iR = V - 100i$
Maximum dissipated across the Zener diode is given by
$P = {V_D}I = (V - 100i)i = 1$
The equation above is equated to zero because Power is given by $1$
Therefore, $100{i^2} - Vi + 1 \geqslant 0$
$i = \dfrac{{V \pm \sqrt {{V^2} - 400} }}{{200}}$
Current should be real, hence the determinant is greater than zero.
${V^2} > 400$
$V > 20V$
The minimum voltage range of the DC source in the circuit is $0 - 24V$
Hence, Option \[(A)\], $0 - 24V$ is the correct answer.
Note: Kirchhoff’s Voltage Law also called Kirchhoff’s loop rule. In $1845$, a German physicist Gustav Kirchhoff developed a pair of laws with the conservation of current and energy within electrical circuits. In Kirchhoff’s Voltage Law, the voltage drops in all directions either negative or positive and returns to the same point. It is very important to maintain the direction either clockwise or counterclockwise, otherwise, the final voltage will not be equal to zero.
Formula Used:
We will be using the formula of Kirchhoff’s voltage law and Power $P = VI$.
Complete step by step solution:
The circuit diode for a Zener diode with a protective resistance is $R = 100\Omega $.
According to Kirchhoff’s voltage law, the voltage around the loop equals the sum of every voltage drop in the same loop for any closed network and also equals zero.
$V = iR + {V_D}$
Given: The value of the protective resistance is given as $R = 100\Omega $ the power dissipated is $1W$${V_D} = V - iR = V - 100i$
Maximum dissipated across the Zener diode is given by
$P = {V_D}I = (V - 100i)i = 1$
The equation above is equated to zero because Power is given by $1$
Therefore, $100{i^2} - Vi + 1 \geqslant 0$
$i = \dfrac{{V \pm \sqrt {{V^2} - 400} }}{{200}}$
Current should be real, hence the determinant is greater than zero.
${V^2} > 400$
$V > 20V$
The minimum voltage range of the DC source in the circuit is $0 - 24V$
Hence, Option \[(A)\], $0 - 24V$ is the correct answer.
Note: Kirchhoff’s Voltage Law also called Kirchhoff’s loop rule. In $1845$, a German physicist Gustav Kirchhoff developed a pair of laws with the conservation of current and energy within electrical circuits. In Kirchhoff’s Voltage Law, the voltage drops in all directions either negative or positive and returns to the same point. It is very important to maintain the direction either clockwise or counterclockwise, otherwise, the final voltage will not be equal to zero.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Main Eligibility Criteria 2025

NIT Delhi Cut-Off 2025 - Check Expected and Previous Year Cut-Offs

JEE Main Seat Allotment 2025: How to Check, Documents Required and Fees Structure

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

NIT Durgapur JEE Main Cut-Off 2025 - Check Expected & Previous Year Cut-Offs

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes

List of Fastest Century in IPL History
