
An engine develops 2kw of power. How much time will it take to lift a mass of 50kg to a height of 40m? \[\left( {g = 10m{\rm{ }}{s^{ - 2}}} \right)\]
Answer
161.1k+ views
Hint: According to the question it is given that the given engine develops the amount of power is 2kw. And the question asks what time it will take to lift a mass of 50kg up to a height of 40m. To solve this question, we will simply insert the formula and enter values and we will get the required solution.
Formula used:
${\rm{P}} = \dfrac{{{\rm{mgh}}}}{{\rm{t}}}$
Where,
P is power developed by the engine.
h is the height at which the object is to be raised
g is the acceleration due to gravity
m is the mass of the given object which is to be lifted and
t is known as the time taken to lift the body.
Complete answer:
The mass of the given object is 50kg
The power of the engine is 2kw which is nothing but $2 \times {10^3}{\rm{W}}$
\[g = 10m{\rm{ }}{s^{ - 2}}\]
The given Height at which the body is to be raised is 40m
Now substituting these above values in the formula,
\[2 \times {10^3} = \dfrac{{50 \times 10 \times 40}}{t}\]
\[ \Rightarrow t = \dfrac{{50 \times 10 \times 40}}{{2 \times {{10}^3}}}\]
\[ \Rightarrow t = 10{\rm{sec}}\]
Hence, the required time to lift the object of 50kg at a height of 40m is 10 seconds.
Note: A common mistake that usually students make mistakes is not converting the unit which results in different and wrong answers. Power is always a function of labour output, therefore if a person works at a variable rate depending on the time of day, his power will likewise vary.
Formula used:
${\rm{P}} = \dfrac{{{\rm{mgh}}}}{{\rm{t}}}$
Where,
P is power developed by the engine.
h is the height at which the object is to be raised
g is the acceleration due to gravity
m is the mass of the given object which is to be lifted and
t is known as the time taken to lift the body.
Complete answer:
The mass of the given object is 50kg
The power of the engine is 2kw which is nothing but $2 \times {10^3}{\rm{W}}$
\[g = 10m{\rm{ }}{s^{ - 2}}\]
The given Height at which the body is to be raised is 40m
Now substituting these above values in the formula,
\[2 \times {10^3} = \dfrac{{50 \times 10 \times 40}}{t}\]
\[ \Rightarrow t = \dfrac{{50 \times 10 \times 40}}{{2 \times {{10}^3}}}\]
\[ \Rightarrow t = 10{\rm{sec}}\]
Hence, the required time to lift the object of 50kg at a height of 40m is 10 seconds.
Note: A common mistake that usually students make mistakes is not converting the unit which results in different and wrong answers. Power is always a function of labour output, therefore if a person works at a variable rate depending on the time of day, his power will likewise vary.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
