
An element has FCC structure with edge length $200$pm. Calculate density if $200$g of this element contains $24 \times {10^{23}}$ atoms.
A. $4.16{\text{ }}gc{m^{ - 3}}$
B. $41.6{\text{ }}gc{m^{ - 3}}$
C. $4.16{\text{ }}kgc{m^{ - 3}}$
D. $41.6{\text{ }}kgc{m^{ - 3}}$
Answer
232.8k+ views
Hint: First find the mass of the unit cell using formula-
Mass of a unit cell = $\dfrac{{ZM}}{N}$ where Z is the effective number of atoms in the unit cell, M is molar mass; N is the Avogadro number or number of atoms. Then calculate the density by putting the given values in the following formula-
Density= $\dfrac{{{\text{Mass of unit cell}}}}{{{\text{Volume of unit cell}}}}$
Step-by-Step Solution-
Given, Molar Mass M= $200$g
Number of atoms N= $24 \times {10^{23}}$
Edge length a= $200$pm
Element having FCC structure has total $4$ atoms in a unit cell. The effective number of atoms in unit cell Z= $4$
So the mass of the unit cell is equal to the mass of the $4$atoms.
Then we know that Mass of a unit cell is given by= $\dfrac{{ZM}}{N}$ where Z is the effective number of atoms in unit cell, M is molar mass, N is the Avogadro number or number of atoms.
On putting the values of the formula we get,
Mass of unit cell= \[4 \times \dfrac{{200}}{{24 \times {{10}^{23}}}}\]
On solving we get,
Mass of unit cell= $3.33 \times {10^{ - 22}}$ g--- (i)
Now the volume of the unit cell= \[{\left( a \right)^3}\]
On putting the values we get,
Volume of unit cell= ${\left( {200 \times {{10}^{ - 10}}} \right)^3}$ $c{m^3}$
Then on solving we get,
Volume of unit cell= $8 \times {10^{ - 24}}$ $c{m^3}$--- (ii)
Now we have to calculate density
And we know that Density= $\dfrac{{{\text{Mass of unit cell}}}}{{{\text{Volume of unit cell}}}}$
On putting the values from eq. (i) and (ii) in the formula we get,
Density= $\dfrac{{3.33 \times {{10}^{ - 22}}}}{{8 \times {{10}^{ - 24}}}}$
On solving we get,
Density = $0.416 \times {10^2}$
Density= $41.6gc{m^{ - 3}}$
Answer-Hence the correct answer is B.
Note: In FCC structure, following points are to be noted-
- The atoms in a unit cell are all present in the corners of the crystal lattice.
- One atom is present at the centre of every face of the cube
- This face centered atom is shared between two adjacent units’ cells in the crystal lattice.
- Only half of each atom belongs to the unit cell.
Mass of a unit cell = $\dfrac{{ZM}}{N}$ where Z is the effective number of atoms in the unit cell, M is molar mass; N is the Avogadro number or number of atoms. Then calculate the density by putting the given values in the following formula-
Density= $\dfrac{{{\text{Mass of unit cell}}}}{{{\text{Volume of unit cell}}}}$
Step-by-Step Solution-
Given, Molar Mass M= $200$g
Number of atoms N= $24 \times {10^{23}}$
Edge length a= $200$pm
Element having FCC structure has total $4$ atoms in a unit cell. The effective number of atoms in unit cell Z= $4$
So the mass of the unit cell is equal to the mass of the $4$atoms.
Then we know that Mass of a unit cell is given by= $\dfrac{{ZM}}{N}$ where Z is the effective number of atoms in unit cell, M is molar mass, N is the Avogadro number or number of atoms.
On putting the values of the formula we get,
Mass of unit cell= \[4 \times \dfrac{{200}}{{24 \times {{10}^{23}}}}\]
On solving we get,
Mass of unit cell= $3.33 \times {10^{ - 22}}$ g--- (i)
Now the volume of the unit cell= \[{\left( a \right)^3}\]
On putting the values we get,
Volume of unit cell= ${\left( {200 \times {{10}^{ - 10}}} \right)^3}$ $c{m^3}$
Then on solving we get,
Volume of unit cell= $8 \times {10^{ - 24}}$ $c{m^3}$--- (ii)
Now we have to calculate density
And we know that Density= $\dfrac{{{\text{Mass of unit cell}}}}{{{\text{Volume of unit cell}}}}$
On putting the values from eq. (i) and (ii) in the formula we get,
Density= $\dfrac{{3.33 \times {{10}^{ - 22}}}}{{8 \times {{10}^{ - 24}}}}$
On solving we get,
Density = $0.416 \times {10^2}$
Density= $41.6gc{m^{ - 3}}$
Answer-Hence the correct answer is B.
Note: In FCC structure, following points are to be noted-
- The atoms in a unit cell are all present in the corners of the crystal lattice.
- One atom is present at the centre of every face of the cube
- This face centered atom is shared between two adjacent units’ cells in the crystal lattice.
- Only half of each atom belongs to the unit cell.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

