
An electron, a proton and an alpha particle having the same kinetic energy are moving in circular orbit of radii ${r_e},{r_p},{r_\alpha }$ respectively in a uniform magnetic field $B$. The relation between ${r_e},{r_p},{r_\alpha }$ is ?
A) ${r_e} < {r_p} < {r_\alpha }$
B) ${r_e} < {r_\alpha } < {r_p}$
C) ${r_e} > {r_p} = {r_\alpha }$
D) ${r_e} < {r_p} = {r_\alpha }$
Answer
123.3k+ views
Hint: The radius of the circular path through which a particle rotates in a magnetic is proportional to the mass of the particle rotates at that circular path. Even if an electron, proton and alpha particle have negligible mass, the mass of those particles are not equal.
Complete step by step answer:
Let’s discuss the forces which are acting on particles which travel through a circular path in a magnetic field.
As the particles are moving in a circular path, within the magnetic field, there will be centripetal force acting on the revolving particles in the circular path. And this centripetal force will be equal to the magnetic force acting on the particle caused by the magnetic through which those particles are travelling.
The centripetal force acting on the particle is given by the formula:
Centripetal force, ${F_c} = \dfrac{{m{v^2}}}{r}$
Where, $m$ = mass of the particle
$v$ = velocity of the particle
$r$ = radius of the circular path through which the particle rotates.
The magnetic force acting on the particle is given by the formula:
Magnetic force, ${F_m} = qvB$
Where, $q$ = charge of moving particle
$v$ = velocity of the particle
$B$ = magnetic field
As we have discussed earlier, centripetal force is equal to the magnetic force:
$ \Rightarrow {F_c} = {F_m}$
$ \Rightarrow \dfrac{{m{v^2}}}{r} = qvB$
\[ \Rightarrow \dfrac{{mv}}{r} = qB\]
\[ \Rightarrow v = \dfrac{{qBr}}{m}\]
We know the kinetic energy is given by the formula,
Kinetic energy, $E = \dfrac{{m{v^2}}}{2}$
Substituting the value of $v$ in this formula, we get,
$ \Rightarrow E = \dfrac{m}{2}\dfrac{{{{(qBr)}^2}}}{{{m^2}}}$
$ \Rightarrow E = \dfrac{{{{(qBr)}^2}}}{{2m}}$
From this equation we can find the value of the radius
$ \Rightarrow {r^2} = \dfrac{{2Em}}{{{{(qB)}^2}}}$
$ \Rightarrow r = \sqrt {\dfrac{{2Em}}{{{{(qB)}^2}}}} $ $ \Rightarrow r = \dfrac{{\sqrt {2Em} }}{{qB}}$
Let’s calculate the value of radius for different particles.
For electron, ${r_e} = \dfrac{{\sqrt {2k{m_e}} }}{{eB}}$
For proton ${r_p} = \dfrac{{\sqrt {2k{m_p}} }}{{eB}}$
For alpha particle, ${r_\alpha } = \dfrac{{\sqrt {2k{m_\alpha }} }}{{{q_\alpha }B}} = \dfrac{{\sqrt {2k4{m_p}} }}{{2eB}} = \dfrac{{\sqrt {2k{m_p}} }}{{eB}}$
As ${m_e} < {m_p}$
So we get, Final answer is Option (D)
Note: Centripetal force is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous centre of curvature of the path. The tension force in the string of a swinging tethered ball and the gravitational force keeping a satellite in orbit are both examples of centripetal forces.
Complete step by step answer:
Let’s discuss the forces which are acting on particles which travel through a circular path in a magnetic field.
As the particles are moving in a circular path, within the magnetic field, there will be centripetal force acting on the revolving particles in the circular path. And this centripetal force will be equal to the magnetic force acting on the particle caused by the magnetic through which those particles are travelling.
The centripetal force acting on the particle is given by the formula:
Centripetal force, ${F_c} = \dfrac{{m{v^2}}}{r}$
Where, $m$ = mass of the particle
$v$ = velocity of the particle
$r$ = radius of the circular path through which the particle rotates.
The magnetic force acting on the particle is given by the formula:
Magnetic force, ${F_m} = qvB$
Where, $q$ = charge of moving particle
$v$ = velocity of the particle
$B$ = magnetic field
As we have discussed earlier, centripetal force is equal to the magnetic force:
$ \Rightarrow {F_c} = {F_m}$
$ \Rightarrow \dfrac{{m{v^2}}}{r} = qvB$
\[ \Rightarrow \dfrac{{mv}}{r} = qB\]
\[ \Rightarrow v = \dfrac{{qBr}}{m}\]
We know the kinetic energy is given by the formula,
Kinetic energy, $E = \dfrac{{m{v^2}}}{2}$
Substituting the value of $v$ in this formula, we get,
$ \Rightarrow E = \dfrac{m}{2}\dfrac{{{{(qBr)}^2}}}{{{m^2}}}$
$ \Rightarrow E = \dfrac{{{{(qBr)}^2}}}{{2m}}$
From this equation we can find the value of the radius
$ \Rightarrow {r^2} = \dfrac{{2Em}}{{{{(qB)}^2}}}$
$ \Rightarrow r = \sqrt {\dfrac{{2Em}}{{{{(qB)}^2}}}} $ $ \Rightarrow r = \dfrac{{\sqrt {2Em} }}{{qB}}$
Let’s calculate the value of radius for different particles.
For electron, ${r_e} = \dfrac{{\sqrt {2k{m_e}} }}{{eB}}$
For proton ${r_p} = \dfrac{{\sqrt {2k{m_p}} }}{{eB}}$
For alpha particle, ${r_\alpha } = \dfrac{{\sqrt {2k{m_\alpha }} }}{{{q_\alpha }B}} = \dfrac{{\sqrt {2k4{m_p}} }}{{2eB}} = \dfrac{{\sqrt {2k{m_p}} }}{{eB}}$
As ${m_e} < {m_p}$
So we get, Final answer is Option (D)
Note: Centripetal force is a force that makes a body follow a curved path. Its direction is always orthogonal to the motion of the body and towards the fixed point of the instantaneous centre of curvature of the path. The tension force in the string of a swinging tethered ball and the gravitational force keeping a satellite in orbit are both examples of centripetal forces.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main

What is the difference between Conduction and conv class 11 physics JEE_Main

Mark the correct statements about the friction between class 11 physics JEE_Main

Find the acceleration of the wedge towards the right class 11 physics JEE_Main

A standing wave is formed by the superposition of two class 11 physics JEE_Main

Derive an expression for work done by the gas in an class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
