
An astronomical telescope has an eyepiece of a focal-length of $5cm$. If the angular magnification in normal adjustment is 10 when the final image is at least distance of distinct vision ($25cm$) from the eyepiece, then angular magnification will be:
A) $10$
B) $12$
C) $50$
D) $60$
Answer
170.7k+ views
Hint: In order to solve this question you have to know the formula for the angular magnification for both the normal adjustment and when the final image is at least distance of distinct vision from the eyepiece. Also, remember all the concepts related to an astronomical telescope.
Formula used:
$m' = - \dfrac{{{f_o}}}{{{f_e}}}\left( {1 + \dfrac{{{f_e}}}{D}} \right)$
here ${f_e}$ is the focal length of the eyepiece of the given astronomical telescope
\[{f_o}\] is the focal length of the given astronomical telescope
$D$ is the least distance of distinct vision of the human eye
Complete step by step solution:
All the information given in the question are:
An astronomical telescope has an eyepiece of focal length, ${f_e} = 5cm$
Angular magnification in normal adjustments, $m = 10cm$
Final image is at least distance of distinct vision, $D = 25cm$
Firstly apply the formula for magnification for normal adjustment that is,
$m = - \dfrac{{{f_o}}}{{{f_e}}}$
On putting all the given values,
$10 = \dfrac{{{f_o}}}{5}$
On further solving, we have
$ \Rightarrow {f_o} = 50cm$
Now, when final image is at least distance of distinct vision from eyepiece, then angular magnification $m'$ is given by
$m' = - \dfrac{{{f_o}}}{{{f_e}}}\left( {1 + \dfrac{{{f_e}}}{D}} \right)$
Here ${f_e}$ is the focal length of the eyepiece of the given astronomical telescope
\[{f_o}\] is the focal length of the given astronomical telescope
$D$ is the least distance of distinct vision of the human eye
$ \Rightarrow m' = 10\left( {1 + \dfrac{5}{{25}}} \right)$
On further solving, we get the angular magnification as
$ \Rightarrow m' = 12$
Therefore, the correct option is (B).
Note: A astronomical telescope is an optical instrument used for observing far away distance. It has an object with an eyepiece with a short focal length and a large focal length to observe distant objects or celestial bodies. The ability of a telescope to magnify a distant object is known as its magnifying power. Mathematically, it is equal to the ratio of the focal length of the objective to the focal length of the eyepiece.
Formula used:
$m' = - \dfrac{{{f_o}}}{{{f_e}}}\left( {1 + \dfrac{{{f_e}}}{D}} \right)$
here ${f_e}$ is the focal length of the eyepiece of the given astronomical telescope
\[{f_o}\] is the focal length of the given astronomical telescope
$D$ is the least distance of distinct vision of the human eye
Complete step by step solution:
All the information given in the question are:
An astronomical telescope has an eyepiece of focal length, ${f_e} = 5cm$
Angular magnification in normal adjustments, $m = 10cm$
Final image is at least distance of distinct vision, $D = 25cm$
Firstly apply the formula for magnification for normal adjustment that is,
$m = - \dfrac{{{f_o}}}{{{f_e}}}$
On putting all the given values,
$10 = \dfrac{{{f_o}}}{5}$
On further solving, we have
$ \Rightarrow {f_o} = 50cm$
Now, when final image is at least distance of distinct vision from eyepiece, then angular magnification $m'$ is given by
$m' = - \dfrac{{{f_o}}}{{{f_e}}}\left( {1 + \dfrac{{{f_e}}}{D}} \right)$
Here ${f_e}$ is the focal length of the eyepiece of the given astronomical telescope
\[{f_o}\] is the focal length of the given astronomical telescope
$D$ is the least distance of distinct vision of the human eye
$ \Rightarrow m' = 10\left( {1 + \dfrac{5}{{25}}} \right)$
On further solving, we get the angular magnification as
$ \Rightarrow m' = 12$
Therefore, the correct option is (B).
Note: A astronomical telescope is an optical instrument used for observing far away distance. It has an object with an eyepiece with a short focal length and a large focal length to observe distant objects or celestial bodies. The ability of a telescope to magnify a distant object is known as its magnifying power. Mathematically, it is equal to the ratio of the focal length of the objective to the focal length of the eyepiece.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

What is Hybridisation in Chemistry?

Wheatstone Bridge for JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
