
An alternating electromotive force is given by $e = 100\sin 314t$, the value of the time within which the electromotive force will be half of its maximum value is
(A) $0.16\;\sec $
(B) $0.16\;\sec .$
(C) $0.0016\;\sec .$
(D) $1.6\;\sec .$
Answer
217.2k+ views
Hint Here, compare the given expression for e.m.f. with the standard formula for e.m.f $e = {e_0}\sin \omega t$ to calculate the peak value of electromotive force. Once peak value is obtained, simplify as per the given condition in the question.
Formula Used: Here we will be using the formula $e = {e_0}\sin \omega t$, where ${e_0}$ will be peak value of electromotive force, $t$ is the time and $\omega $ is the frequency.
Complete step by step solution
Given expression for an alternating electromotive force is $e = 100\sin 314t$.
As we know that $e = {e_0}\sin \omega t$ is the standard formula for e.m.f.
Now, equate the given formula to get the peak value of electromotive force.
${e_0}\sin \omega t = 100\sin 314t$
From the above, the maximum value of electromotive force is $100$.
As the electromotive force reduced to half of its maximum value, then
$ \Rightarrow \dfrac{1}{2} \times 100 = 100\sin 314t$
Now, write the left hand side of expression in terms of sine trigonometric function and cancel out the same terms at both sides to reduce the equation.
As we know that $\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$, then
Now, compare the two values and write the expression at the right hand side in terms of $\pi $.
$ \Rightarrow \dfrac{\pi }{6} = 100 \times \pi \times t$
Take the same variables at the same side of the equation.
Divide both sides of the equation by the coefficient of $t$.
$ \Rightarrow t = \dfrac{1}{{600}}\;{\text{sec}}{\text{.}} = 0.0016\;{\text{sec}}$
So, option (c) is correct answer
Additional informationThe electromotive force equals the potential difference between the terminals of the cell when the cell is in open circuit. It is abbreviated as emf or $e$. The maximum value of the electromotive force can be determined by its peak value. In an alternating current source, its peak value is defined as the maximum value of current in either direction of the cycle.
Note
The maximum value of any function is its peak value. Knowledge of Trigonometric values must be necessary for comparison to determine the value of time.
Formula Used: Here we will be using the formula $e = {e_0}\sin \omega t$, where ${e_0}$ will be peak value of electromotive force, $t$ is the time and $\omega $ is the frequency.
Complete step by step solution
Given expression for an alternating electromotive force is $e = 100\sin 314t$.
As we know that $e = {e_0}\sin \omega t$ is the standard formula for e.m.f.
Now, equate the given formula to get the peak value of electromotive force.
${e_0}\sin \omega t = 100\sin 314t$
From the above, the maximum value of electromotive force is $100$.
As the electromotive force reduced to half of its maximum value, then
$ \Rightarrow \dfrac{1}{2} \times 100 = 100\sin 314t$
Now, write the left hand side of expression in terms of sine trigonometric function and cancel out the same terms at both sides to reduce the equation.
As we know that $\sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{1}{2}$, then
Now, compare the two values and write the expression at the right hand side in terms of $\pi $.
$ \Rightarrow \dfrac{\pi }{6} = 100 \times \pi \times t$
Take the same variables at the same side of the equation.
Divide both sides of the equation by the coefficient of $t$.
$ \Rightarrow t = \dfrac{1}{{600}}\;{\text{sec}}{\text{.}} = 0.0016\;{\text{sec}}$
So, option (c) is correct answer
Additional informationThe electromotive force equals the potential difference between the terminals of the cell when the cell is in open circuit. It is abbreviated as emf or $e$. The maximum value of the electromotive force can be determined by its peak value. In an alternating current source, its peak value is defined as the maximum value of current in either direction of the cycle.
Note
The maximum value of any function is its peak value. Knowledge of Trigonometric values must be necessary for comparison to determine the value of time.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

