
An alternating current is given by $I = {I_1}\cos \omega t + {I_2}\sin \omega t$ . The $RMS$ value of current is given by:
A) $\dfrac{{{I_1} + {I_2}}}{{\sqrt 2 }}$
B) $\dfrac{{{{\left( {{I_1} + {I_2}} \right)}^2}}}{2}$
C) $\sqrt {\dfrac{{{I_1}^2 + {I_2}^2}}{2}} $
D) $\dfrac{{\sqrt {{I_1}^2 + {I_2}^2} }}{2}$
Answer
232.8k+ views
Hint: The average value of the alternating current always tends to zero. Hence the root means square value is used. From the given alternating current, square its value. Taking the square root of the mean value provides the value of the root means square of the alternating current.
Formula used:
(1) The formula of the root means square value of the current is given by
${I_{rms}} = \sqrt {{I^2}} $
Where ${I_{rms}}$ is the root means square value of the current and $I$ is the mean value of the current.
(2) The algebraic formula is given by
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
(3) The trigonometric formula is given by
$\sin 2\theta = 2\sin \theta \cos \theta $
Complete step by step solution:
It is given that the alternating current, $I = {I_1}\cos \omega t + {I_2}\sin \omega t$
For getting the mean value of the current, square the given alternating current,
$\Rightarrow {I^2} = {\left( {{I_1}\cos \omega t + {I_2}\sin \omega t} \right)^2}$
By using the formula of the ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ , we get
$\Rightarrow {I^2} = I_1^2{\cos ^2}\omega t + {I_2}^2{\sin ^2}\omega t + 2{I_1}{I_2}\cos \omega t\sin \omega t$
Since the instantaneous value of the alternating current is ${45^ \circ }$ , substitute this value in the above equation, we get
$\Rightarrow {I^2} = \dfrac{{I_1^2}}{2} + \dfrac{{{I_2}^2}}{2} + 2{I_1}{I_2}\sin 2\omega t$
By simplifying the above step, we get
$\Rightarrow {I^2} = \dfrac{{I_1^2}}{2} + \dfrac{{{I_2}^2}}{2} + 2{I_1}{I_2} \times 0$
By further simplification,
$\Rightarrow {I^2} = \dfrac{{{I_1}^2}}{2} + \dfrac{{{I_2}^2}}{2}$
$\Rightarrow {I^2} = \dfrac{{{I_1}^2 + {I_2}^2}}{2}$
By taking the square root on both sides, in order to neglect the square in the left hand side of the equation.
$\Rightarrow I = \sqrt {\dfrac{{{I_1}^2 + {I_2}^2}}{2}} $
The value of the root means the square value of the current is obtained as $I = \sqrt {\dfrac{{{I_1}^2 + {I_2}^2}}{2}} $ .
Thus the option (C) is correct.
Note: In the above solution, $\sin \omega t$ and the $\cos \omega t$ is substituted as the $\dfrac{1}{{\sqrt 2 }}$ . Also remember the formula, $\sin 2\theta = 2\sin \theta \cos \theta $ . From the above formula, it is framed as $\cos \theta \sin \theta = 2\sin 2\theta $ . The root means the square value of the sinusoidal wave will produce the same heating effect similar to that of direct current.
Formula used:
(1) The formula of the root means square value of the current is given by
${I_{rms}} = \sqrt {{I^2}} $
Where ${I_{rms}}$ is the root means square value of the current and $I$ is the mean value of the current.
(2) The algebraic formula is given by
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
(3) The trigonometric formula is given by
$\sin 2\theta = 2\sin \theta \cos \theta $
Complete step by step solution:
It is given that the alternating current, $I = {I_1}\cos \omega t + {I_2}\sin \omega t$
For getting the mean value of the current, square the given alternating current,
$\Rightarrow {I^2} = {\left( {{I_1}\cos \omega t + {I_2}\sin \omega t} \right)^2}$
By using the formula of the ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ , we get
$\Rightarrow {I^2} = I_1^2{\cos ^2}\omega t + {I_2}^2{\sin ^2}\omega t + 2{I_1}{I_2}\cos \omega t\sin \omega t$
Since the instantaneous value of the alternating current is ${45^ \circ }$ , substitute this value in the above equation, we get
$\Rightarrow {I^2} = \dfrac{{I_1^2}}{2} + \dfrac{{{I_2}^2}}{2} + 2{I_1}{I_2}\sin 2\omega t$
By simplifying the above step, we get
$\Rightarrow {I^2} = \dfrac{{I_1^2}}{2} + \dfrac{{{I_2}^2}}{2} + 2{I_1}{I_2} \times 0$
By further simplification,
$\Rightarrow {I^2} = \dfrac{{{I_1}^2}}{2} + \dfrac{{{I_2}^2}}{2}$
$\Rightarrow {I^2} = \dfrac{{{I_1}^2 + {I_2}^2}}{2}$
By taking the square root on both sides, in order to neglect the square in the left hand side of the equation.
$\Rightarrow I = \sqrt {\dfrac{{{I_1}^2 + {I_2}^2}}{2}} $
The value of the root means the square value of the current is obtained as $I = \sqrt {\dfrac{{{I_1}^2 + {I_2}^2}}{2}} $ .
Thus the option (C) is correct.
Note: In the above solution, $\sin \omega t$ and the $\cos \omega t$ is substituted as the $\dfrac{1}{{\sqrt 2 }}$ . Also remember the formula, $\sin 2\theta = 2\sin \theta \cos \theta $ . From the above formula, it is framed as $\cos \theta \sin \theta = 2\sin 2\theta $ . The root means the square value of the sinusoidal wave will produce the same heating effect similar to that of direct current.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

