
An alternating current is given by $I = {I_1}\cos \omega t + {I_2}\sin \omega t$ . The $RMS$ value of current is given by:
A) $\dfrac{{{I_1} + {I_2}}}{{\sqrt 2 }}$
B) $\dfrac{{{{\left( {{I_1} + {I_2}} \right)}^2}}}{2}$
C) $\sqrt {\dfrac{{{I_1}^2 + {I_2}^2}}{2}} $
D) $\dfrac{{\sqrt {{I_1}^2 + {I_2}^2} }}{2}$
Answer
216k+ views
Hint: The average value of the alternating current always tends to zero. Hence the root means square value is used. From the given alternating current, square its value. Taking the square root of the mean value provides the value of the root means square of the alternating current.
Formula used:
(1) The formula of the root means square value of the current is given by
${I_{rms}} = \sqrt {{I^2}} $
Where ${I_{rms}}$ is the root means square value of the current and $I$ is the mean value of the current.
(2) The algebraic formula is given by
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
(3) The trigonometric formula is given by
$\sin 2\theta = 2\sin \theta \cos \theta $
Complete step by step solution:
It is given that the alternating current, $I = {I_1}\cos \omega t + {I_2}\sin \omega t$
For getting the mean value of the current, square the given alternating current,
$\Rightarrow {I^2} = {\left( {{I_1}\cos \omega t + {I_2}\sin \omega t} \right)^2}$
By using the formula of the ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ , we get
$\Rightarrow {I^2} = I_1^2{\cos ^2}\omega t + {I_2}^2{\sin ^2}\omega t + 2{I_1}{I_2}\cos \omega t\sin \omega t$
Since the instantaneous value of the alternating current is ${45^ \circ }$ , substitute this value in the above equation, we get
$\Rightarrow {I^2} = \dfrac{{I_1^2}}{2} + \dfrac{{{I_2}^2}}{2} + 2{I_1}{I_2}\sin 2\omega t$
By simplifying the above step, we get
$\Rightarrow {I^2} = \dfrac{{I_1^2}}{2} + \dfrac{{{I_2}^2}}{2} + 2{I_1}{I_2} \times 0$
By further simplification,
$\Rightarrow {I^2} = \dfrac{{{I_1}^2}}{2} + \dfrac{{{I_2}^2}}{2}$
$\Rightarrow {I^2} = \dfrac{{{I_1}^2 + {I_2}^2}}{2}$
By taking the square root on both sides, in order to neglect the square in the left hand side of the equation.
$\Rightarrow I = \sqrt {\dfrac{{{I_1}^2 + {I_2}^2}}{2}} $
The value of the root means the square value of the current is obtained as $I = \sqrt {\dfrac{{{I_1}^2 + {I_2}^2}}{2}} $ .
Thus the option (C) is correct.
Note: In the above solution, $\sin \omega t$ and the $\cos \omega t$ is substituted as the $\dfrac{1}{{\sqrt 2 }}$ . Also remember the formula, $\sin 2\theta = 2\sin \theta \cos \theta $ . From the above formula, it is framed as $\cos \theta \sin \theta = 2\sin 2\theta $ . The root means the square value of the sinusoidal wave will produce the same heating effect similar to that of direct current.
Formula used:
(1) The formula of the root means square value of the current is given by
${I_{rms}} = \sqrt {{I^2}} $
Where ${I_{rms}}$ is the root means square value of the current and $I$ is the mean value of the current.
(2) The algebraic formula is given by
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
(3) The trigonometric formula is given by
$\sin 2\theta = 2\sin \theta \cos \theta $
Complete step by step solution:
It is given that the alternating current, $I = {I_1}\cos \omega t + {I_2}\sin \omega t$
For getting the mean value of the current, square the given alternating current,
$\Rightarrow {I^2} = {\left( {{I_1}\cos \omega t + {I_2}\sin \omega t} \right)^2}$
By using the formula of the ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ , we get
$\Rightarrow {I^2} = I_1^2{\cos ^2}\omega t + {I_2}^2{\sin ^2}\omega t + 2{I_1}{I_2}\cos \omega t\sin \omega t$
Since the instantaneous value of the alternating current is ${45^ \circ }$ , substitute this value in the above equation, we get
$\Rightarrow {I^2} = \dfrac{{I_1^2}}{2} + \dfrac{{{I_2}^2}}{2} + 2{I_1}{I_2}\sin 2\omega t$
By simplifying the above step, we get
$\Rightarrow {I^2} = \dfrac{{I_1^2}}{2} + \dfrac{{{I_2}^2}}{2} + 2{I_1}{I_2} \times 0$
By further simplification,
$\Rightarrow {I^2} = \dfrac{{{I_1}^2}}{2} + \dfrac{{{I_2}^2}}{2}$
$\Rightarrow {I^2} = \dfrac{{{I_1}^2 + {I_2}^2}}{2}$
By taking the square root on both sides, in order to neglect the square in the left hand side of the equation.
$\Rightarrow I = \sqrt {\dfrac{{{I_1}^2 + {I_2}^2}}{2}} $
The value of the root means the square value of the current is obtained as $I = \sqrt {\dfrac{{{I_1}^2 + {I_2}^2}}{2}} $ .
Thus the option (C) is correct.
Note: In the above solution, $\sin \omega t$ and the $\cos \omega t$ is substituted as the $\dfrac{1}{{\sqrt 2 }}$ . Also remember the formula, $\sin 2\theta = 2\sin \theta \cos \theta $ . From the above formula, it is framed as $\cos \theta \sin \theta = 2\sin 2\theta $ . The root means the square value of the sinusoidal wave will produce the same heating effect similar to that of direct current.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

