
An alkyl halide with molecular formula ${C_6}{H_{12}}Br$ on dehydrohalogenation gives two isomeric alkenes X and Y with molecular formula ${C_6}{H_{12}}$ on reductive ozonolysis X and Y gives compounds $C{H_3}COC{H_3},C{H_3}CHO,C{H_3}C{H_2}CHO$ and ${\left( {C{H_3}} \right)_2}CHCHO$ the alkyl halide is-
(A) 4-bromo-2-methylpentane.
(B) 3-bromo-2-methylpentane
(C) 2-bromo-2,3 dimethylbutane.
(D) 2,2-dimethyl-1-bromobutane.
Answer
124.5k+ views
Hint: The reaction follows $\beta $- dehydrohalogenation which is characterized as an elimination reaction. Let’s consider the structure of ethyl bromide $C{H_3} - C{H_2} - Br$. Now, we know that $\beta $- dehydrohalogenation means hydrogen atom will be eliminated from the $\beta $ position.
Complete step by step solution:
> After the reaction with alcoholic KOH on heating gives-
(Br attached to the carbon atom will be named as the $\alpha $ while the other atom will be named as $\beta $.
$ \Rightarrow C{H_2} - C{H_2} - Br\xrightarrow[{ - HBr}]{{Alc.KOH/\Delta }}C{H_2} = C{H_2}$
> Now, the second step is given as ozonolysis. Whenever you react any alkene with ozone in the presence of dichloromethane followed by zinc hydrolysis which means reductive hydrolysis, it makes an ozonide complex.
Let’s first consider 3-bromo-2-methylpentane-
(we will have two beta positions and one alpha position. This alpha position will be the one carbon to which bromide is attached and the beta carbons are the carbons present on the right and left side of the alpha carbon. This means that there will be two compounds formation)
$ \Rightarrow C{H_3} - CH(C{H_3}) - CH(Br) - C{H_2}C{H_3}\xrightarrow[{ - HBr}]{{alc.KOH}}C{H_3} - C(C{H_3}) = CH - C{H_2}C{H_3}$
Let this product be product 1.
If we eliminate hydrogen from the beta position present on the right side-
$ \Rightarrow C{H_3} - CH(C{H_3}) - CH(Br) - C{H_2}C{H_3}\xrightarrow[{ - HBr}]{{alc.KOH}}C{H_3}C(C{H_3}) - CH = CH - C{H_3}$
Let this product be our product number second.
Now, when we make both the products go through ozonolysis, we get-
The first product after the ozonolysis will be will be-
$ \Rightarrow {\left( {C{H_3}} \right)_2}C = O + OHC - C{H_2}C{H_3}$
The second product after the ozonolysis will be will be-
$ \Rightarrow {\left( {C{H_3}} \right)_2}CH - CHO + C{H_3}CHO$
This clearly gives us the answer that option B will be the correct option.
Note: Ozonolysis is an organic chemical reaction to determine the position of a double carbon-carbon bond in unsaturated compounds. The ozone compound contributes to the production of ozonide and the ozonide produces a combination of aldehydes , ketones or carboxylic acids after the process of hydrogenation or treatment with acid.
Complete step by step solution:
> After the reaction with alcoholic KOH on heating gives-
(Br attached to the carbon atom will be named as the $\alpha $ while the other atom will be named as $\beta $.
$ \Rightarrow C{H_2} - C{H_2} - Br\xrightarrow[{ - HBr}]{{Alc.KOH/\Delta }}C{H_2} = C{H_2}$
> Now, the second step is given as ozonolysis. Whenever you react any alkene with ozone in the presence of dichloromethane followed by zinc hydrolysis which means reductive hydrolysis, it makes an ozonide complex.
Let’s first consider 3-bromo-2-methylpentane-
(we will have two beta positions and one alpha position. This alpha position will be the one carbon to which bromide is attached and the beta carbons are the carbons present on the right and left side of the alpha carbon. This means that there will be two compounds formation)
$ \Rightarrow C{H_3} - CH(C{H_3}) - CH(Br) - C{H_2}C{H_3}\xrightarrow[{ - HBr}]{{alc.KOH}}C{H_3} - C(C{H_3}) = CH - C{H_2}C{H_3}$
Let this product be product 1.
If we eliminate hydrogen from the beta position present on the right side-
$ \Rightarrow C{H_3} - CH(C{H_3}) - CH(Br) - C{H_2}C{H_3}\xrightarrow[{ - HBr}]{{alc.KOH}}C{H_3}C(C{H_3}) - CH = CH - C{H_3}$
Let this product be our product number second.
Now, when we make both the products go through ozonolysis, we get-
The first product after the ozonolysis will be will be-
$ \Rightarrow {\left( {C{H_3}} \right)_2}C = O + OHC - C{H_2}C{H_3}$
The second product after the ozonolysis will be will be-
$ \Rightarrow {\left( {C{H_3}} \right)_2}CH - CHO + C{H_3}CHO$
This clearly gives us the answer that option B will be the correct option.
Note: Ozonolysis is an organic chemical reaction to determine the position of a double carbon-carbon bond in unsaturated compounds. The ozone compound contributes to the production of ozonide and the ozonide produces a combination of aldehydes , ketones or carboxylic acids after the process of hydrogenation or treatment with acid.
Recently Updated Pages
Difference Between Alcohol and Phenol

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main Course 2025 - Important Updates and Details

Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main Login 2045: Step-by-Step Instructions and Details

Physics Average Value and RMS Value JEE Main 2025

Types of Solutions

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Clemmenson and Wolff Kishner Reductions for JEE

Other Pages
Biomolecules Class 12 Notes: CBSE Chemistry Chapter 10

NCERT Solutions for Class 12 Chemistry In Hindi Chapter 3 Electrochemistry Hindi Medium

Aldehyde Ketone and Carboxylic Acid Class 12 Notes: CBSE Chemistry Chapter 8

Coordination Compounds Class 12 Notes: CBSE Chemistry Chapter 5

Classification of Drugs

JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
